Effects of (Li0.5Nb0.5)3+ co-substitution on microwave dielectric characteristics of MgAl2O4 ceramics

Jun Yin , Xi-zhi Yang , Yuan-ming Lai , Qin Zhang , Cong Qi , Xiao Li , Hua Su , Chong-sheng Wu , Gang Jiang

Journal of Central South University ›› 2023, Vol. 30 ›› Issue (5) : 1461 -1468.

PDF
Journal of Central South University ›› 2023, Vol. 30 ›› Issue (5) : 1461 -1468. DOI: 10.1007/s11771-023-5321-9
Article

Effects of (Li0.5Nb0.5)3+ co-substitution on microwave dielectric characteristics of MgAl2O4 ceramics

Author information +
History +
PDF

Abstract

Nominal compositions MgAl2−x(Li0.5Nb0.5)xO4 (x=0–0.20) microwave dielectric ceramics were synthesized via the traditional solid-state reaction. The crystal structural characteristics, crystalline phases, and microwave dielectric properties were investigated. Rietveld refinement results showed that MgAl2O4 and Mg5Nb4O15 form a stable two-phase system. Densification of the specimens decreases monotonically with the increase of (Li0.5Nb0.5)3+ content when sintered at 1550 °C. The variation tendency of quality factor (Qf) is closely related to the densification, packing fraction and covalency. Likewise, the bond valence of the Al-site is responsible for the temperature coefficient of resonance frequency (τf). MgAl2−x(Li0.5Nb0.5)xO4 ceramic with x=0.04 can be well densified by sintering at 1550 °C for 4 h and exhibits optimum microwave dielectric properties with εr=8.21, Qf=81600 GHz, and τf=−94×10−6 °C−1.

Keywords

microwave dielectric ceramics / co-substitution / MgAl2O4 ceramic

Cite this article

Download citation ▾
Jun Yin, Xi-zhi Yang, Yuan-ming Lai, Qin Zhang, Cong Qi, Xiao Li, Hua Su, Chong-sheng Wu, Gang Jiang. Effects of (Li0.5Nb0.5)3+ co-substitution on microwave dielectric characteristics of MgAl2O4 ceramics. Journal of Central South University, 2023, 30(5): 1461-1468 DOI:10.1007/s11771-023-5321-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CavaR J. Dielectric materials for applications in microwave communications [J]. Journal of Materials Chemistry, 2001, 11(1): 54-62

[2]

ZhuX-d, KongF-t, MaX-sheng. Sintering behavior and properties of MgTiO3/CaO-B2O3-SiO2 ceramic composites for LTCC applications [J]. Ceramics International, 2019, 45(2): 1940-1945

[3]

AndrewsJ G, BuzziS, ChoiW, et al. . What will 5G be? [J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6): 1065-1082

[4]

ZhangP, SunK-x, MaoX-r, et al. . Crystal structures and high microwave dielectric properties in Li+/Ti4+ ions co-doped Li3Mg2NbO6 ceramics [J]. Ceramics International, 2019, 46(6): 8097-8103

[5]

WangM-h, ZhouF, WangQ-l, et al. . Synthesis of CaCu3Ti4O12 powders and ceramics by sol-gel method using decanedioic acid and its dielectric properties [J]. Journal of Central South University, 2012, 19(12): 3385-3389

[6]

SurendranK P, BijumonP V, MohananP, et al. . (1 - x)MgAl2O4-xTiO2 dielectrics for microwave and millimeter wave applications [J]. Applied Physics A, 2005, 81(4): 823-826

[7]

UllahB, LeiW, YaoY-f, et al. . Structure and synergy performance of (1 - x)Sr0.25Ce0.5TiO3-xLa(Mg0.5Ti0.5)O3 based microwave dielectric ceramics for 5G architecture [J]. Journal of Alloys and Compounds, 2018, 763: 990-996

[8]

TsaiW-c, LiouY-h, LiouY-cheng. Microwave dielectric properties of MgAl2O4-CoAl2O4 spinel compounds prepared by reaction-sintering process [J]. Materials Science & Engineering B, 2012, 177(13): 1133-1137

[9]

HuangC-l, TaiC-y, HuangC Y, et al. . Low-loss microwave dielectrics in the spinel-structured (Mg1−xNix)Al2O4 solid solutions [J]. Journal of the American Ceramic Society, 2010, 93(7): 1999-2003

[10]

ZhengC-w, WuS-y, ChenX-m, et al. . Modification of MgAl2O4 microwave dielectric ceramics by Zn substitution [J]. Journal of the American Ceramic Society, 2007, 90(5): 1483-1486

[11]

LanX-k, LiJ, ZouZ-y, et al. . Improved sinterability and microwave dielectric properties of [Zn0.5Ti0.5]3+-doped ZnAl2O4 spinel solid solution [J]. Journal of the American Ceramic Society, 2019, 102(10): 5952-5957

[12]

QinT-y, ZhongC-w, QinY, et al. . The structure evolution and microwave dielectric properties of MgAl2−x(Mg0.5Ti0.5)xO4 solid solutions [J]. Ceramics International, 2020, 46(11): 19046-19051

[13]

YangP-c, YangX-z, LaiY-m, et al. . Tailoring temperature stability of MgAl2O4 microwave dielectric ceramic via (Cu0.5Ti0.5)3+co-substituted [J]. Journal of Solid State Chemistry, 2022, 312: 123291

[14]

WangN, ZhouH-f, GongJ-z, et al. . Enhanced sinterability and microwave dielectric performance of (1−x)ZnAl2O4-x Li4/3Ti5/3O4 ceramics [J]. Journal of Electronic Materials, 2016, 45(6): 3157-3161

[15]

JingX-l, TangX-l, TangW-h, et al. . Effects of Zn2+ substitution on the sintering behaviour and dielectric properties of Li2Mg1−xZnxSiO4 ceramics [J]. Applied Physics A, 2019, 125(6): 415

[16]

SuW-a, BianX-b, LiuPeng. Synthesis of Mg4Nb2O9 and its microwave property [J]. Bulletin of the Chinese Ceramic Society, 2005, 24148-50(in Chinese)

[17]

YouY C, ParkH L, SongY G, et al. . Stable phases in the MgO-Nb2O5 system at 1250 °C [J]. Journal of Materials Science Letters, 1994, 13(20): 1487-1489

[18]

ReimanisI E, KleebeH J. Reactions in the sintering of MgAl2O4 spinel doped with LiF [J]. Materials Research and Advanced Techniques, 2007, 98(12): 1273-1278

[19]

KambaS, PetzeltJ, BuixaderasE, et al. . High frequency dielectric properties of A5B4O15 microwave ceramics [J]. Journal of Applied Physics, 2001, 89(7): 3900-3906

[20]

KimE, JeonC, ClemP. Effects of crystal structure on the microwave dielectric properties of ABO4 (A=Ni, Mg, Zn and B=Mo, W) ceramics [J]. Journal of the American Ceramic Society, 2012, 95(9): 19046-19051

[21]

PeiC-j, HouC-d, LiY, et al. . A low εr and temperature-stable Li3Mg2SbO6 microwave dielectric ceramics [J]. Journal of Alloys and Compounds, 2019, 79246-49

[22]

PennS, AlfordN M, TempletonA, et al. . Effect of porosity and grain size on the microwave dielectric properties of sintered alumina [J]. Journal of the American Ceramic Society, 2005, 80(7): 1885-1888

[23]

XiangR, LiH, ZhangP-c, et al. . Crystal structure and microwave dielectric properties of Mg2Ti1−xGa4/3xO4 (0.05⩽x⩽0.13) ceramics [J]. Ceramics International, 2021, 47(6): 8447-8452

[24]

BreezeJ D, PerkinsJ M, MccombD W, et al. . Do grain boundaries affect microwave dielectric loss in oxides? [J]. Journal of the American Ceramic Society, 2009, 92(3): 671-674

[25]

KimE S, ChunB S, FreerR, et al. . Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics [J]. Journal of the European Ceramic Society, 2010, 30(7): 1731-1736

[26]

BrownI D, ShannonR D. Empirical bond-strength-bond-length curves for oxides [J]. Acta Crystallographica Section A, 1973, 29(3): 266-282

[27]

KanA, OgawaH, OhsatoH. Synthesis and crystal structure-microwave dielectric property relations in Sn-substituted Ca3(Zr1−xSnx)Si2O9 solid solutions with cuspidine structure [J]. Japanese Journal of Applied Physics, 2007, 46(10B): 7108-7111

[28]

GurevichV L, TagantsevA K. Intrinsic dielectric loss in crystals [J]. Advances in Physics, 1991, 40(6): 719-767

[29]

PangL-x, ZhouD, QiZ-m, et al. . Structure-property relationships of low sintering temperature scheelite-structured (1−x)BiVO4-xLaNbO4 microwave dielectric ceramics [J]. Journal of Materials Chemistry C, 2017, 5(10): 2695-2701

[30]

ChoY S, YoonK H, LeeB D, et al. . Understanding microwave dielectric properties of Pb-based complex perovskite ceramics via bond valence [J]. Ceramics International, 2004, 30(8): 2247-2250

[31]

YangH-y, ZhangS-r, ChenY-w, et al. . Crystal chemistry, Raman spectra, and bond characteristics of trirutile-type Co0.5Ti0.5TaO4 microwave dielectric ceramics [J]. Inorganic Chemistry, 2019, 58(1): 968-976

[32]

WangG, ZhangD-n, LiJ, et al. . Crystal structure, bond energy, Raman spectra, and microwave dielectric properties of Ti-doped Li3Mg2NbO6 ceramics [J]. Journal of the American Ceramic Society, 2020, 103(8): 4321-4332

[33]

WANG Fan-shuo, LAI Yuan-ming, ZENG Yi-ming, et al. Enhanced microwave dielectric properties in Mg2Al4Si5O18 through Cu2+ substitution [J]. European Journal of Inorganic Chemistry, 2021(25): 2464 - 2470. DOI: https://doi.org/10.1002/ejic.202100174.

[34]

WuF-f, ZhouD, DuC, et al. . Design and fabrication of a satellite communication dielectric resonator antenna with novel low loss and temperature-stabilized (Sm1−xCax)(Nb1−xMox)O4 (x=0.15–0.7) microwave ceramics [J]. Chemistry of Materials, 2023, 35(1): 104-115

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/