DFT/TDDFT study on electronic, optical and structural properties of MAPbI3/RbSnI2Cl and MAPbI2Cl/RbXI3 (X=Pb, Sn) heterostructures

Yadollah Safaei Ardakani , Mahmood Moradi

Journal of Central South University ›› 2023, Vol. 30 ›› Issue (5) : 1447 -1460.

PDF
Journal of Central South University ›› 2023, Vol. 30 ›› Issue (5) : 1447 -1460. DOI: 10.1007/s11771-023-5291-y
Article

DFT/TDDFT study on electronic, optical and structural properties of MAPbI3/RbSnI2Cl and MAPbI2Cl/RbXI3 (X=Pb, Sn) heterostructures

Author information +
History +
PDF

Abstract

Electronic and optical properties of MAPbI2Cl/RbPbI3, MAPbI2Cl/RbSnI3 and MAPbI3/RbSnI2Cl heterostructures (MA=CH3NH3), were studied by first principle approach. Our calculations show that the MAPbI3/RbSnI2Cl and MAPbI2Cl/RbSnI3 structures have semiconductor properties with gaps of 0.19 and 0.97 eV, respectively. The effective masses calculations show that the MAPbI2Cl/RbSnI3 and MAPbI3/RbSnI2Cl can be used in photovoltaic devices. Also, the partial density of energy states (PDOS) diagrams show that in structure of MAPbI3/RbSnI2Cl, the two-dimensional electron gas is formed at the junction. In the following, by plotting the changes in the length of anion-cation bonds in the z direction and analyzing the local distribution of electrical potential surfaces, a ferroelectric-like behavior can be seen in the MAPbI2Cl/RbSnI3 and MAPbI3/RbSnI2Cl structures. Finally, in all cases, the reflectivity functions have large values and behave similar to shiny metals. Also, both MAPbI2Cl/RbSnI3 and MAPbI3/RbSnI2Cl heterostructures have absorption peaks in the visible range that are located at 412 and 701 nm, respectively.

Keywords

first principle calculations / heterostructure / perovskites / electronic properties / two-dimensional electron gas / ferroelectric behavior

Cite this article

Download citation ▾
Yadollah Safaei Ardakani, Mahmood Moradi. DFT/TDDFT study on electronic, optical and structural properties of MAPbI3/RbSnI2Cl and MAPbI2Cl/RbXI3 (X=Pb, Sn) heterostructures. Journal of Central South University, 2023, 30(5): 1447-1460 DOI:10.1007/s11771-023-5291-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

TrepakovV A, VikhninV S, KapphanS, et al. . Zero-phonon optical lines of impurity centers in ABO3 perovskite-like ferroelectrics [J]. Journal of Luminescence, 2000, 87–89: 1126-1129

[2]

PopeJ M, SimkovichG. The solubility of carbon in BaTiO3 at fixed, low oxygen potentials at 800°C [J]. Materials Research Bulletin, 1980, 15(6): 743-751

[3]

WangF-n, LiJ-c, DuY-l, et al. . The origin of two-dimensional electron gas formed in LaGaO3/SrTiO3 [J]. Applied Surface Science, 2015, 355: 1316-1320

[4]

LiJ, WuW-j, ShenY-q, et al. . From LaAlO3/SrTiO3 to LaAlO3/KNbO3: Improving the transport properties of two-dimensional electronic gas in created +1/+1 interfaces [J]. Computational Materials Science, 2019, 156: 286-291

[5]

KöksalF, BahadırŞ, KarabulutB, et al. . Electron paramagnetic resonance of some ABX3 compounds [J]. International Journal of Inorganic Materials, 1999, 1(5–6): 391-393

[6]

MachidaK I, MitsuiT, KatoT, et al. . Ferroelectricity and structural phase transitions in a hexagonal ABX3-type antiferromagnetic compound: KNiCl3 [J]. Solid State Communications, 1994, 91(1): 17-20

[7]

KuboT, MiyakitaJ, MaegawaS. 55Mn NMR in triangular lattice Heisenberg antiferromagnet CsMnI3 [J]. Journal of Magnetism and Magnetic Materials, 1998, 177–181: 829-830

[8]

HolmesD E, HarvillM L, BoganL D. A survey of ABX3 halides for optical second harmonic generation [J]. Materials Research Bulletin, 1975, 10(7): 753-759

[9]

YaffeO, GuoY-s, TanL Z, et al. . Local polar fluctuations in lead halide perovskite crystals [J]. Physical Review Letters, 2017, 118(13): 136001

[10]

KangY, HanS. Intrinsic carrier mobility of cesium lead halide perovskites [J]. Physical Review Applied, 2018, 104044013

[11]

YangC, WuY-h, MaQ-s, et al. . Nanocrystals of halide perovskite: Synthesis, properties, and applications [J]. Journal of Energy Chemistry, 2018, 273622-636

[12]

AnayaM, LozanoG, CalvoM E, et al. . ABX3 perovskites for tandem solar cells [J]. Joule, 2017, 1(4): 769-793

[13]

BerdiyorovG R, CarignanoM A, MadjetM E. Effect of hydrostatic strain on the electronic transport properties of CsPbI3 [J]. Computational Materials Science, 2017, 137: 314-317

[14]

XiaoJ-w, LiangY, ZhangS-y, et al. . Stabilizing RbPbBr3 perovskite nanocrystals through Cs+ substitution [J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2019, 25(10): 2597-2603

[15]

WeiQ-b, ZiW, YangZ, et al. . Photoelectric performance and stability comparison of MAPbI3 and FAPbI3 perovskite solar cells [J]. Solar Energy, 2018, 174: 933-939

[16]

ShaoY-c, YuanY-b, HuangJ-song. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells [J]. Nature Energy, 2016, 1(1): 1-6

[17]

JeonN J, NohJ H, KimY C, et al. . Solvent engineering for high-performance inorganic - organic hybrid perovskite solar cells [J]. Nature Materials, 2014, 13(9): 897-903

[18]

YiZ-j, LadiN H, ShaiX-x, et al. . Will organic-inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications? [J]. Nanoscale Advances, 2019, 1(4): 1276-1289

[19]

HanF, HaoG-m, WanZ-q, et al. . Bifunctional electron transporting layer/perovskite interface linker for highly efficient perovskite solar cells [J]. Electrochimica Acta, 2019, 296: 75-81

[20]

ZhangM-l, ZhangX, HuangL-y, et al. . Charge transport in hybrid halide perovskites [J]. Physical Review B, 2017, 96(19): 195203

[21]

WangX-g, LiM-m, ZhangB, et al. . Recent progress in organometal halide perovskite photodetectors [J]. Organic Electronics, 2018, 52: 172-183

[22]

ZhangL, YuF-x, ChenL-h, et al. . Adsorption of molecular additive onto lead halide perovskite surfaces: A computational study on Lewis base thiophene additive passivation [J]. Applied Surface Science, 2018, 443176-183

[23]

ZhaoZ-y, XuW, PanG-c, et al. . Enhancing the exciton emission of CsPbCl3 perovskite quantum dots by incorporation of Rb+ ions [J]. Materials Research Bulletin, 2019, 112: 142-146

[24]

LuoP-f, ZhouY-g, XiaW, et al. . Colorful, bandgap-tunable, and air-stable CsPb(IxBr1−x)3 inorganic perovskite films via a novel sequential chemical vapor deposition [J]. Ceramics International, 2018, 44(11): 12783-12788

[25]

EidsvågH, RasukkannuM, VajeestonP, et al. . Bandgap engineering in CsSnxPb(1−x)I3 and their influence on light absorption [J]. Materials Letters, 2018, 218: 253-256

[26]

AndradeA B, MacedoZ S, ValerioM E G, et al. . Thermoluminescence and optically stimulated luminescence properties of the Eu2+-doped KMgF3 produced by a hydrothermal microwave method [J]. Journal of Luminescence, 2019, 206: 302-307

[27]

HuangG-h, HuangY-p, XuW, et al. . Cesium lead halide perovskite nanocrystals for ultraviolet and blue light blocking [J]. Chinese Chemical Letters, 2019, 30(5): 1021-1023

[28]

MengY, AhmadiM, WuX-y, et al. . High performance and stable all-inorganic perovskite light emitting diodes by reducing luminescence quenching at PEDOT: PSS/Perovskites interface [J]. Organic Electronics, 2019, 64: 47-53

[29]

YangW-m, TangY-h, ZhangQ-t, et al. . Reducing Pb concentration in α-CsPbI3 based perovskite solar cell materials via alkaline-earth metal doping: A DFT computational study [J]. Ceramics International, 2017, 43(16): 13101-13112

[30]

BaiD-l, BianH, JinZ-w, et al. . Temperature-assisted crystallization for inorganic CsPbI2Br perovskite solar cells to attain high stabilized efficiency 14.81% [J]. Nano Energy, 2018, 52: 408-415

[31]

MohandesA, MoradiM, NadgaranH. Numerical simulation of inorganic Cs2AgBiBr6 as a lead-free perovskite using device simulation SCAPS-1D [J]. Optical and Quantum Electronics, 2021, 53(6): 1-22

[32]

GaoY, XuW-z, HeF, et al. . Boosting performance of CsPbI3 perovskite solar cells via the synergy of hydroiodic acid and deionized water [J]. Advanced Energy and Sustainability Research, 2022, 3(2): 2100149

[33]

PinzónC, MartínezN, CasasG, et al. . Optimization of inverted all-inorganic CsPbI3 and CsPbI2Br perovskite solar cells by SCAPS-1D simulation [J]. Solar, 2022, 24559-571

[34]

YangG, PhanQ V, LiuM, et al. . Material defect study of thallium lead iodide (TlPbI3) crystals for radiation detector applications [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 954: 161516

[35]

GordilloG, OtáloraC A, ReinosoM A. Study of trapping and recombination processes in thin films of MAPbI3, MAPbI2Br and MAPbI2Cl through photoconductivity measurements [J]. Journal of Materials Science: Materials in Electronics, 2018, 29(5): 4276-4284

[36]

ZhangJ-y, GaoX-f, DengY-l, et al. . Comparison of life cycle environmental impacts of different perovskite solar cell systems [J]. Solar Energy Materials and Solar Cells, 2017, 1669-17

[37]

ParkB W, JainS M, ZhangX-l, et al. . Resonance Raman and excitation energy dependent charge transfer mechanism in halide-substituted hybrid perovskite solar cells [J]. ACS Nano, 2015, 9(2): 2088-2101

[38]

ZhangS-f, ZhangC-m, BiE-b, et al. . Organic-inorganic halide perovskite solar cell with CH3NH3PbI2Br as hole conductor [J]. Journal of Power Sources, 2017, 339: 61-67

[39]

YangS-m, ZhaoH, WuM, et al. . Highly efficient and stable planar CsPbI2Br perovskite solar cell with a new sensitive-dopant-free hole transport layer obtained via an effective surface passivation [J]. Solar Energy Materials and Solar Cells, 2019, 201: 110052

[40]

BeckerM A, ScarpelliL, NedelcuG, et al. . Long exciton dephasing time and coherent phonon coupling in CsPbBr2Cl perovskite nanocrystals [J]. Nano Letters, 2018, 18(12): 7546-7551

[41]

RuanW, ZhangZ-w, HuY-q, et al. . Self-passivated perovskite solar cells with wider bandgap perovskites as electron blocking layer [J]. Applied Surface Science, 2019, 465420-426

[42]

ZarickH F, SoetanN, ErwinW R, et al. . Mixed halide hybrid perovskites: A paradigm shift in photovoltaics [J]. Journal of Materials Chemistry A, 2018, 6(14): 5507-5537

[43]

AliM M, SaffariM, SoleimaniH R, et al. . High performance of mixed halide perovskite solar cells: Role of halogen atom and plasmonic nanoparticles on the ideal current density of cell [J]. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 97: 282-289

[44]

LimD H, RamasamyP, KwakD H, et al. . Solution-phase synthesis of rubidium lead iodide orthorhombic perovskite nanowires [J]. Nanotechnology, 2017, 28(25): 255601

[45]

LeeS, ChoiJ, JeonJ B, et al. . Conducting bridge resistive switching behaviors in cubic MAPbI3, orthorhombic RbPbI3, and their mixtures [J]. Advanced Electronic Materials, 2019, 521800586

[46]

KumavatS, SinghD, SonvaneY, et al. . Ab-initio study of strain engineering optical properties of RbPbI3 [J]. AIP Conference Proceedings, 2019, 21151030154

[47]

NatikA, AbidY, MoubahR, et al. . Structural, elastic, electronic and optical properties of RbPbI3 perovskites studied using ab-initio calculations [J]. Phase Transitions, 2020, 93154-61

[48]

JungM H, RhimS H, MoonD. TiO2/RbPbI3 halide perovskite solar cells [J]. Solar Energy Materials and Solar Cells, 2017, 172: 44-54

[49]

NyaybanA, PandaS, ChowdhuryA, et al. . First principle studies of rubidium lead halides towards photovoltaic application [J]. Materials Today Communications, 2020, 24: 101190

[50]

JongU G, YuC J, KimY S, et al. . First-principles study on the material properties of the inorganic perovskite Rb1−xCsxPbI3 for solar cell applications [J]. Physical Review B, 2018, 98(12): 125116

[51]

KarM, KörzdörferT. Computational high throughput screening of inorganic cation based halide perovskites for perovskite only tandem solar cells [J]. Materials Research Express, 2020, 75055502

[52]

ThieleG, SerrB R. Crystal structure of rubidium triiodostannate(II), RbSnI3 [J]. Zeitschrift Für Kristallographie - Crystalline Materials, 1995, 210164

[53]

LiX, DanY-b, DongR-z, et al. . Computational screening of new perovskite materials using transfer learning and deep learning [J]. Applied Sciences, 2019, 9245510

[54]

JiangJ-k, OnwudinantiC K, HattonR A, et al. . Stabilizing lead-free all-inorganic tin halide perovskites by ion exchange [J]. The Journal of Physical Chemistry C, Nanomaterials and Interfaces, 2018, 1223117660-17667

[55]

MarshallK P, TaoS-x, WalkerM, et al. . Cs1−xRbxSnI3 light harvesting semiconductors for perovskite photovoltaics [J]. Materials Chemistry Frontiers, 2018, 2(8): 1515-1522

[56]

CaiC, TengY, WuJ-h, et al. . In situ photosynthesis of an MAPbI3/CoP hybrid heterojunction for efficient photocatalytic hydrogen evolution [J]. Advanced Functional Materials, 2020, 30(35): 2001478

[57]

GanY-j, ZhaoD, QinB-y, et al. . Numerical simulation of high-performance CsPbI3/FAPbI3 heterojunction perovskite solar cells [J]. Energies, 2022, 15197301

[58]

HanJ-l, LiangZ-d, GuoS-y, et al. . Photoresponse improvement of a MAPbI3 p-i-n heterojunction photodetector by modifying with a PCBM layer and optimizing ZnO layer thickness [J]. Surfaces and Interfaces, 2022, 34102315

[59]

IsmailR A, AbdulnabiR K, AbdulrazzaqO A, et al. . Preparation of MAPbI3 perovskite film by pulsed laser deposition for high-performance silicon-based heterojunction photodetector [J]. Optical Materials, 2022, 126112147

[60]

FengY-q, ZhangJ, DuanC-y, et al. . Improved inverted MAPbI3 perovskite solar cell with triphenylphosphine oxide passivation layer [J]. Optical Materials, 2022, 127112264

[61]

QiB k, WuJ-r, ChiangS-e, et al. . Improved performance of PCBM/MAPbI3 heterojunction photovoltaic cells with the treatment of a saturated BCP/IPA solution [J]. Solar Energy Materials and Solar Cells, 2022, 242111782

[62]

LiuQ, YangY q, WangX-f, et al. . High-performance UV-visible photodetectors based on CH3NH3bI3−xClx/GaN microwire array heterostructures [J]. Journal of Alloys and Compounds, 2021, 864158710

[63]

HameedT A, MohamedF, Abd-El-MessiehS L, et al. . Methylammonium lead iodide/poly(methyl methacrylate) nanocomposite films for photocatalytic applications [J]. Materials Chemistry and Physics, 2023, 293126811

[64]

LiY-j, LvP, LiC, et al. . Heterostructural perovskite solar cell constructed with Li-doped p-MAPbI3/n-TiO2 PN junction [J]. Solar Energy, 2021, 226446-454

[65]

ZhangZ-x, XuC-h, ZhuC-y, et al. . Fabrication of MAPbI3 perovskite/Si heterojunction photodetector arrays for image sensing application [J]. Sensors and Actuators A: Physical, 2021, 332113176

[66]

WuG M, TsengC C, ChangT W, et al. . Study of antimony selenide hole-transport material for Mo/Sb2Se3/MAPbI3/C60/GZO/Ag heterojunction planar solar cells [J]. Surface and Coatings Technology, 2021, 405126550

[67]

AidarkhanovD, SuryaC, NgA. The roles of black phosphorus in performance enhancement of halide perovskite solar cells [J]. Journal of Energy Chemistry, 2022, 67672-683

[68]

FradiK, BouichA, SlimiB, et al. . Towards improving the optoelectronics properties of MAPbI3(1−x)B3x/ZnO heterojunction by bromine doping [J]. Optik, 2022, 249: 168283

[69]

MiaoS-j, LiuT-l, DuY-j, et al. . 2D material and perovskite heterostructure for optoelectronic applications [J]. Nanomaterials (Basel, Switzerland), 2022, 12(12): 2100

[70]

WangY, ChenY-t, ZhangT-y, et al. . Chemically stable black phase CsPbI3 inorganic perovskites for high-efficiency photovoltaics [J]. Advanced Materials (Deerfield Beach, Fla), 2020, 3245e2001025

[71]

AbiaC, LópezC A, GainzaJ, et al. . Detailed structural features of the perovskite-related halide RbPbI3 for solar cell applications [J]. Inorganic Chemistry, 2022, 61145502-5511

[72]

AkhtarianfarS F, ShojaeiS, KhamenehA S. High-performance CsPbI3/XPbI3 (X=MA and FA) heterojunction perovskite solar cell [J]. Optics Communications, 2022, 512128053

[73]

KimY S, RiC H, KoU H, et al. . Interfacial enhancement of photovoltaic performance in MAPbI3/CsPbI3 superlattice [J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14679-14687

[74]

ChoJ, JeenH, ChoE. Density functional theory based interfacial studies of ABO3/SrTiO3 (A = La, Y, Sc, B = Al, Ga) and its relation to polar catastrophe [J]. Thin Solid Films, 2018, 65113-17

[75]

FengH-jian. Ferroelectric polarization driven optical absorption and charge carrier transport in CH3NH3PbI3/TiO2-based photovoltaic cells [J]. Journal of Power Sources, 2015, 291: 58-65

[76]

XueY-b, GuoY, HouS-g, et al. . The effect of oxygen vacancies on the properties of polar and nonpolar (0 0 1) LaAlO3/SrTiO3 heterostructures [J]. Applied Surface Science, 2018, 450: 260-264

[77]

GuoY, XueY-b, XuL-qiang. Interfacial interactions and properties of lead oxysalts passivated MAPbI3 perovskites from first-principles calculations [J]. Computational Materials Science, 2021, 187: 110081

[78]

TimrovI, VastN, GebauerR, et al. . turboEELS—A code for the simulation of the electron energy loss and inelastic X-ray scattering spectra using the Liouville-Lanczos approach to time-dependent density-functional perturbation theory [J]. Computer Physics Communications, 2015, 196460-469

[79]

NematollahiP, NeytsE C. Direct methane conversion to methanol on M and MN4 embedded graphene (M = Ni and Si): A comparative DFT study [J]. Applied Surface Science, 2019, 496: 143618

[80]

RaoY-c, ChuZ-q, GuX, et al. . Theoretical design of a strain-controlled nanoporous CN membrane for helium separation [J]. Computational Materials Science, 2019, 16153-57

[81]

CuiW, ChenL-c, LiJ-y, et al. . Ba-vacancy induces semiconductor-like photocatalysis on insulator BaSO4 [J]. Applied Catalysis B: Environmental, 2019, 253: 293-299

[82]

Ashwin KishoreM R, RavindranP. Tailoring the electronic band gap and band edge positions in the C2N monolayer by P and As substitution for photocatalytic water splitting [J]. The Journal of Physical Chemistry C, 2017, 121(40): 22216-22224

[83]

FoxMOptical properties of solids [M], 20102nd edOxford, Oxford University Press

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/