Effect of alkali cations on structure and stability of aluminum-oxygen-fluorine complex ions in aluminum electrolytes

Ze-xun Han , Peng-cheng Hao , Chang-ke Chen , Run-dong Chen , Lin-wei Zhang , Xiao-jun Lyu

Journal of Central South University ›› 2023, Vol. 30 ›› Issue (3) : 707 -720.

PDF
Journal of Central South University ›› 2023, Vol. 30 ›› Issue (3) : 707 -720. DOI: 10.1007/s11771-023-5275-y
Article

Effect of alkali cations on structure and stability of aluminum-oxygen-fluorine complex ions in aluminum electrolytes

Author information +
History +
PDF

Abstract

In the aluminium electrolytes, the structure and stability of different complex ions directly determine the properties of the melts, and further affect the process and technical-economic indicator for aluminum electrolysis. Herein, we investigate the effect of alkali cations on structure and stability of aluminum-oxygen-fluorine complex ions ([Al2OF6]2− and [Al2O2F4]2−) using structural characteristics, charge population analysis, Raman spectrum, cationic binding free energy, density of state based on density functional theory calculation. The research indicates the [Al2OF6]2− ion is more stable than [Al2O2F4]2− ion for isolated Al-O-F ions. When adding the alkali cations, the cations with larger sizes enhance the stability of [Al2OF6]2− and [Al2O2F4]2− ions, implying the Al-O-F ions are easier to form and exist in cryolite electrolytes with a sequence of K3AlF6>Na3AlF6>Li3AlF6. We can observe intuitively the part of electrons of Al atoms and cation disappear and then gather around O and F atoms from electron density difference diagrams. The calculated Raman frequencies of the Al-O-F ions are greatly consistent with the published literature value.

Keywords

aluminum-oxygen-fluorine complex ions / density functional theory / alkali cations / aluminum electrolytes / structure and stability

Cite this article

Download citation ▾
Ze-xun Han, Peng-cheng Hao, Chang-ke Chen, Run-dong Chen, Lin-wei Zhang, Xiao-jun Lyu. Effect of alkali cations on structure and stability of aluminum-oxygen-fluorine complex ions in aluminum electrolytes. Journal of Central South University, 2023, 30(3): 707-720 DOI:10.1007/s11771-023-5275-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

StebbinsJ F, FarnanI, DandoN, et al. . Solids and liquids in the NaF-AlF3-Al2O3 system: A high-temperature NMR study [J]. Journal of the American Ceramic Society, 1992, 75(11): 3001-3006

[2]

RobertE, OlsenJ E, DanekV, et al. . Structure and thermodynamics of alkali fluoride-aluminum fluoride-alumina melts. vapor pressure, solubility, and Raman spectroscopic studies [J]. The Journal of Physical Chemistry B, 1997, 101(46): 9447-9457

[3]

MaN, YouJ-l, LuL-m, et al. . Micro-structure studies of the molten binary K3AlF6-Al2O3 system by in situ high temperature Raman spectroscopy and theoretical simulation [J]. Inorganic Chemistry Frontiers, 2018, 5(8): 1861-1868

[4]

LinM, HuX-w, ShiZ-n, et al. . Existence of Al2F7 in molten MF-AlF3 (M = K, Cs) systems as determined by Raman spectroscopy and structural simulation [J]. Journal of Energy Chemistry, 2020, 44: 19-23

[5]

LacassagneV, BessadaC, FlorianP, et al. . Structure of high-temperature NaF-AlF3-Al2O3 melts: A multinuclear NMR study [J]. The Journal of Physical Chemistry B, 2002, 106(8): 1862-1868

[6]

HuX-w, QuJ-y, GaoB-l, et al. . Raman spectroscopy and ionic structure of Na3AlF6-Al2O3 melts [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(2): 402-406

[7]

GilbertB, MamantovG, BegunG M. Raman spectra of Al2O3 solutions in molten cryolite and other aluminum fluoride containing melts [J]. Inorganic and Nuclear Chemistry Letters, 1976, 12(5): 415-424

[8]

LvX-j, HanZ-x, ZhangH-x, et al. . Ionic structure and transport properties of KF-NaF-AlF3 fused salt: A molecular dynamics study [J]. Physical Chemistry Chemical Physics, 2019, 21(14): 7474-7482

[9]

LvX-j, HanZ-x, GuanC-h, et al. . Ionic micro-structure and transport properties of low-temperature aluminium electrolytes containing potassium cryolite and sodium cryolite [J]. Physical Chemistry Chemical Physics, 2019, 21(30): 16573-16582

[10]

RobertE, LacassagneV, BessadaC, et al. . Study of NaF–AlF3 melts by high-temperature 27Al NMR spectroscopy: Comparison with results from Raman spectroscopy [J]. Inorganic Chemistry, 1999, 38(2): 214-217

[11]

YanH-w, LiuZ-w, MaW-h, et al. . KF-NaF-AlF3 system: Liquidus temperature and phase transition [J]. JOM, 2020, 72(1): 247-252

[12]

KanH-m, WangZ-w, BanY-g, et al. . Electrical conductivity of Na3AIF6-AlF3-Al2O3-CaF2-LiF (NaCl) system electrolyte [J]. Transactions of Nonferrous Metals Society of China, 2007, 17(1): 181-186

[13]

PicardG S, BouyerF C, LeroyM, et al. . Structures of oxyfluoroaluminates in molten cryolite-alumina mixtures investigated by DFT-based calculations [J]. Journal of Molecular Structure: THEOCHEM, 1996, 368: 67-80

[14]

LinM, HuX-w, YuJ-y, et al. . Raman spectroscopy and quantum theory calculations on complexes in the KF-AlF3-Al2O3 system [J]. Journal of Molecular Liquids, 2021, 326115267

[15]

TanM, LiT, CuiH-n, et al. . Investigation on the ionic composition and spectroscopic properties of molten NaF-AlF3-Al2O3 salts at 1300 K [J]. Metallurgical and Materials Transactions B, 2022, 53(1): 474-484

[16]

NeeseF. Software update: The ORCA program system, version 4.0 [J]. WIREs Computational Molecular Science, 2018, 8(1): e1327

[17]

NazmutdinovR R, ZinkichevaT T, VassilievS Y, et al. . A spectroscopic and computational study of Al(III) complexes in cryolite melts: Effect of cation nature [J]. Chemical Physics, 2013, 412C22-29

[18]

NazmutdinovR R, ZinkichevaT T, VassilievS Y, et al. . A spectroscopic and computational study of Al(III) complexes in sodium cryolite melts: Ionic composition in a wide range of cryolite ratios [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2010, 75(4): 1244-1252

[19]

GrimmeS, AntonyJ, EhrlichS, et al. . A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J]. The Journal of Chemical Physics, 2010, 132(15): 154104

[20]

LuT, ChenF-wu. Multiwfn: A multifunctional wavefunction analyzer [J]. Journal of Computational Chemistry, 2012, 335580-592

[21]

NiuH, WangX-t, ShaoC, et al. . Revealing the oxygen reduction reaction activity origin of single atoms supported on g-C3N4 monolayers: A first-principles study [J]. Journal of Materials Chemistry A, 2020, 8(14): 6555-6563

[22]

RichterW E, DuarteL J, BrunsR E. Are “GAPT charges” really just charges? [J]. Journal of Chemical Information and Modeling, 2021, 61(8): 3881-3890

[23]

STERN C D, MAAT J, DOTSON D L, et al. Capturing nonlocal through-bond effects in molecular mechanics force fields: II. Using fractional bond orders to fit torsion parameters [J]. bioRxiv, 2022, DOI: https://doi.org/10.1101/2022.01.17.476653. DOI: https://doi.org/10.1101/2022.01.17.476653.

[24]

ZapataT J C, MckemmishL K. VIBFREQ 1295: A new database for vibrational frequency calculations [J]. The Journal of Physical Chemistry A, 2022, 126(25): 4100-4122

[25]

LinM, HuX-w, YuJ-y, et al. . Morphology of alumina in NaF-AlF3 systems determined by Raman spectroscopy and quantum mechanical calculations [J]. Journal of Molecular Liquids, 2020, 315113747

[26]

LuT, ChenF-wu. Multiwfn: A multifunctional wavefunction analyzer [J]. Journal of Computational Chemistry, 2012, 33(5): 580-592

[27]

CioslowskiJ. General and unique partitioning of molecular electronic properties into atomic contributions[J]. Physical Review Letters, 1989, 62(13): 1469-1471

[28]

LuT, ChenF-wu. Atomic dipole moment corrected hirshfeld population method [J]. Journal of Theoretical and Computational Chemistry, 2012, 11(1): 163-183

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/