Analysis of magnetohydrodynamic squeezed viscous fluid flow in a porous medium

Shafqat Hussain , Shahzada M. Atif , Muhammad Sagheer , Ibraheem Jahangeer

Journal of Central South University ›› 2023, Vol. 30 ›› Issue (3) : 844 -854.

PDF
Journal of Central South University ›› 2023, Vol. 30 ›› Issue (3) : 844 -854. DOI: 10.1007/s11771-023-5262-3
Article

Analysis of magnetohydrodynamic squeezed viscous fluid flow in a porous medium

Author information +
History +
PDF

Abstract

In this numerical analysis, the significance of features of squeezed viscous fluid flow in the presence of inclined magnetic field effect has been scrutinized. For the efficient heat transfer phenomenon, the viscous dissipation and Joule heating effects have also been incorporated in the temperature equation. The dimensionless conservation equations are tackled with the help of shooting method. The behavior of particular parameters contemplated in the model on the fluid motion, energy distribution rate of heat transfer and surface drag coefficient are presented graphically and discussed in detail. Significant importance of the inclined magnetic field effect is noticed in the fluid velocity and heat transfer rate. From the performed simulations, it is noticed that as Prandtl number is increased from 1 to 5, the rate of heat transfer is increased by 56%, whereas when the inclined magnetic parameter γ is increased from π/8 to π/2, the rate of heat transfer is declined by 9.7%. It is also observed that the rate of heat transfer diminishs as the squeezing parameter is hiked whereas stretching parameter of lower plate has an opposite trend.

Keywords

squeezed flow / viscous fluid / magnetohydrodynamic flow / suction/injection

Cite this article

Download citation ▾
Shafqat Hussain, Shahzada M. Atif, Muhammad Sagheer, Ibraheem Jahangeer. Analysis of magnetohydrodynamic squeezed viscous fluid flow in a porous medium. Journal of Central South University, 2023, 30(3): 844-854 DOI:10.1007/s11771-023-5262-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

StefanM J. Versuch versuche über die scheinbare Adhäsion [J]. Akademie der Wissenschaften in Wien Mathematik-Naturwissen, 1874, 230(69): 713-721

[2]

JacksonJ D. A study of squeezing flow [J]. Applied Scientific Research, Section A, 1963, 11(1): 148-152

[3]

UshaR, SridharanR. Arbitrary squeezing of a viscous fluid between elliptic plates [J]. Fluid Dynamics Research, 1996, 18(1): 35-51

[4]

ReynoldsO. IV. On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil [J]. Philosophical Transactions of the Royal Society of London, 1886, 177: 157-234

[5]

ArchibaldF R. Load capacity and time relations for squeeze films [J]. Transactions of the American Society of Mechanical Engineers, 1965, 78: A231-A245

[6]

MustafaM, HayatT, ObaidatS. On heat and mass transfer in the unsteady squeezing flow between parallel plates [J]. Meccanica, 2012, 47(7): 1581-1589

[7]

AhmadS, FarooqM, JavedM, et al. . Slip analysis of squeezing flow using doubly stratified fluid [J]. Results in Physics, 2018, 9: 527-533

[8]

GanjiD D, AbbasiM, RahimiJ, et al. . On the MHD squeeze flow between two parallel disks with suction or injection via HAM and HPM [J]. Frontiers of Mechanical Engineering, 2014, 9(3): 270-280

[9]

AtifS M, HussainS, SagheerM. Effect of thermal radiation and variable thermal conductivity on magnetohydrodynamics squeezed flow of carreau fluid over a sensor surface [J]. Journal of Nanofluids, 2019, 8(4): 806-816

[10]

AcharyaN, DasK, KunduP K. The squeezing flow of Cu-water and Cu-kerosene nanofluids between two parallel plates [J]. Alexandria Engineering Journal, 2016, 55(2): 1177-1186

[11]

FakourM, VahabzadehA, GanjiD D, et al. . Analytical study of micropolar fluid flow and heat transfer in a channel with permeable walls [J]. Journal of Molecular Liquids, 2015, 204: 198-204

[12]

ShabnamM S, KhanM S, et al. . Numerical investigation of a squeezing flow between concentric cylinders under the variable magnetic field of intensity [J]. Scientific Reports, 2022, 12: 9148

[13]

BabuM J, RaoY S, KumarA S, et al. . Squeezed flow of polyethylene glycol and water based hybrid nanofluid over a magnetized sensor surface: A statistical approach [J]. International Communications in Heat and Mass Transfer, 2022, 135106136

[14]

KhanQ, FarooqM, AhmadS, et al. . Analysis of squeezing flow of Powell-Eyring fluid with generalized transport phenomena and double stratification past inclined parallel sheets [J]. Waves in Random and Complex Media, 2022, 32(6): 3095-3114

[15]

TanW-c, MasuokaT. Stokes’ first problem for a second grade fluid in a porous half-space with heated boundary [J]. International Journal of Non-Linear Mechanics, 2005, 40(4): 515-522

[16]

İlhanO A. Approximation solution of the squeezing flow by the modification of optimal homotopy asymptotic method [J]. The European Physical Journal Plus, 2020, 135(9): 745

[17]

AtifS M, HussainS, SagheerM. Magnetohydrodynamic stratified bioconvective flow of micropolar nanofluid due to gyrotactic microorganisms [J]. AIP Advances, 2019, 92025208

[18]

HussainS. Finite element solution for MHD flow of nanofluids with heat and mass transfer through a porous media with thermal radiation, viscous dissipation and chemical reaction effects [J]. Advances in Applied Mathematics and Mechanics, 2017, 94904-923

[19]

AtifS M, HussainS, SagheerM. Effect of viscous dissipation and Joule heating on MHD radiative tangent hyperbolic nanofluid with convective and slip conditions [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(4): 1-17

[20]

SheikholeslamiM. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media [J]. Computer Methods in Applied Mechanics and Engineering, 2019, 344319-333

[21]

RashidiM M, KavyaniN, AbelmanS. Investigation of entropy generation in MHD and slip flow over a rotating porous disk with variable properties [J]. International Journal of Heat and Mass Transfer, 2014, 70: 892-917

[22]

SiddiquiA M, IrumS, AnsariA R. Unsteady squeezing flow of a viscous mhd fluid between parallel plates, a solution using the homotopy perturbation method [J]. Mathematical Modelling and Analysis, 2008, 13(4): 565-576

[23]

SheikholeslamiM, JafaryarM, BarzegarG M, et al. . Influence of novel turbulator on efficiency of solar collector system [J]. Environmental Technology & Innovation, 2022, 26: 102383

[24]

DOMAIRRY G, AZIZ A. Approximate analysis of MHD squeeze flow between two parallel disks with suction or injection by homotopy perturbation method [J]. Mathematical Problems in Engineering, 2009: 1–19. DOI: https://doi.org/10.1155/2009/603916.

[25]

HayatT, SajjadR, AlsaediA, et al. . On squeezed flow of couple stress nanofluid between two parallel plates [J]. Results in Physics, 2017, 7553-561

[26]

HatamiM, JingD-w, SongD-x, et al. . Heat transfer and flow analysis of nanofluid flow between parallel plates in presence of variable magnetic field using HPM [J]. Journal of Magnetism and Magnetic Materials, 2015, 396: 275-282

[27]

RashadA M, RashidiM M, LorenziniG, et al. . Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium saturated with Cu-water nanofluid [J]. International Journal of Heat and Mass Transfer, 2017, 104: 878-889

[28]

KirubhashankarC K, GaneshS. Unsteady MHD flow of a casson fluid in a parallel plate channel with heat and mass transfer of chemical reaction [J]. Paripex–Indian Journal of Research, 2012, 3(2): 101-105

[29]

RajuC S K, SandeepN. Heat and mass transfer in MHD non-Newtonian bio-convection flow over a rotating cone/plate with cross diffusion [J]. Journal of Molecular Liquids, 2016, 215: 115-126

[30]

SheikholeslamiM, EbrahimpourZ. Thermal improvement of linear Fresnel solar system utilizing Al2O3-water nanofluid and multi-way twisted tape [J]. International Journal of Thermal Sciences, 2022, 176: 107505

[31]

ATIF S, HUSSAIN S, SAGHEER M. Effect of thermal radiation on MHD micropolar Carreau nanofluid with viscous dissipation, Joule heating and internal heating [J]. Scientia Iranica, 2019. DOI: https://doi.org/10.24200/sci.2019.51653.2294.

[32]

AtifS M, KamranA, ShahS. MHD micropolar nanofluid with non Fourier and non Fick’s law [J]. International Communications in Heat and Mass Transfer, 2021, 122105114

[33]

SuX-h, YinY-xing. Effects of an inclined magnetic field on the unsteady squeezing flow between parallel plates with suction/injection [J]. Journal of Magnetism and Magnetic Materials, 2019, 484266-271

[34]

SheikholeslamiM, SaidZ, JafaryarM. Hydrothermal analysis for a parabolic solar unit with wavy absorber pipe and nanofluid [J]. Renewable Energy, 2022, 188: 922-932

[35]

RashidiM M, BagheriS, MomoniatE, et al. . Entropy analysis of convective MHD flow of third grade non-Newtonian fluid over a stretching sheet [J]. Ain Shams Engineering Journal, 2017, 8(1): 77-85

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/