Understanding the leaching behavior of calcium molybdate through the construction of lgc—pH diagrams
Wen-juan Zhang , Jian-yong Che , Ji-nian Zhu , Guo-ju Chen , Liu Xia , Jun Chen , Cheng-yan Wang
Journal of Central South University ›› 2023, Vol. 30 ›› Issue (2) : 465 -476.
Understanding the leaching behavior of calcium molybdate through the construction of lgc—pH diagrams
CaMoO4 is not only the main component of powellite, but also a key intermediate product in molybdenum metallurgy. The current leaching of CaMoO4 is mainly in experimental and industrial research, and seldom in theoretical analysis. In this research, lgc - pH diagrams for Ca-Mo-H2O, Ca-Mo-PO4-H2O, Ca-Mo-SiO4-H2O, Ca-Mo-CO3-H2O, Ca-Mo-Y(EDTA)-H2O, and Ca-Mo-F-H2O systems were constructed to predict the dissolution behavior of CaMoO4 in Na2EDTA, Na2SiO3, Na3PO4, Na2CO3, and NaF solutions. The diagrams suggest that CaMoO4 can be dissolved by the five types of solutions and the solid products, for example, Ca5(PO4)3OH, CaSiO3, Ca3Si2O7, CaCO3 and CaF2 were generated depending on the added reagent, while calcium combines with EDTA to form soluble CaY2− in Na2EDTA solution. The stability regions of CaMoO4 and solid products are dependent on the ion concentration and pH value. Meanwhile, the proper increase of reagent concentration and pH is beneficial for raising the solubility of molybdenum. The leaching experiments of synthetic CaMoO4 in various media indicate that CaMoO4 can be dissolved with a high leaching efficiency which was in accord with the thermodynamic analysis. This work presents the construction of thermodynamic diagrams that is useful in the analysis of the encountered phenomena in molybdenum hydrometallurgy and provides a thermodynamic approach for treating CaMoO4.
thermodynamic / CaMoO4 / leaching / lgc-pH diagrams
| [1] |
|
| [2] |
LYU Ying, LI Hong-gui. Utilize tungsten concentrates of high molybdenum rationally [J]. China Tungsten Industry, 2005(5): 15–16, 21. (in Chinese) |
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
DOUGLAS D A, MENASHI J, RAPPAS A S. Process for recovering chromium, vanadium, molybdenum and tungsten values from a feed material: US4298581 [P]. 1981-11-03. |
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
/
| 〈 |
|
〉 |