Continuous dynamic recrystallization nucleation mechanism and annealing twin evolution with respect to grain growth in a nickel-based superalloy

Yan-jiang Wang , Zhi Jia , Ze-xi Gao , De-xue Liu

Journal of Central South University ›› 2023, Vol. 30 ›› Issue (1) : 49 -60.

PDF
Journal of Central South University ›› 2023, Vol. 30 ›› Issue (1) : 49 -60. DOI: 10.1007/s11771-022-5215-2
Article

Continuous dynamic recrystallization nucleation mechanism and annealing twin evolution with respect to grain growth in a nickel-based superalloy

Author information +
History +
PDF

Abstract

The hot compression deformation behavior of a nickel-based superalloy was characterized by electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) techniques. The main microstructure characteristics of the studied superalloy after hot compression deformation featured the development of subgrains, dynamic recrystallization (DRX) nuclei, DRX grain growth, and annealing twins. Considering the approximate orientation between deformed grains and the dynamic recrystallization results, we concluded that the continuous dynamic recrystallization (CDRX) nucleation mechanism characterized by subgrain bonding and rotation played a major role at low temperatures and high strain rate in addition to twinning-assisted recrystallization nucleation. The presence of MC and γ′ phase precipitated phases at low temperatures (900 and 1000 °C) facilitated the nucleation of DRX but hindered the growth of recrystallization. Grain growth at high deformation temperatures depended on the mutual annexation of grains induced by high-angle grain boundary migration, which consumed part of the annealing twins, and only a few annealing twins remained stable after orientation deflection.

Keywords

nickel-based superalloy / high strain rate / continuous dynamic recrystallization / annealing twin / precipitated phase

Cite this article

Download citation ▾
Yan-jiang Wang, Zhi Jia, Ze-xi Gao, De-xue Liu. Continuous dynamic recrystallization nucleation mechanism and annealing twin evolution with respect to grain growth in a nickel-based superalloy. Journal of Central South University, 2023, 30(1): 49-60 DOI:10.1007/s11771-022-5215-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WuR, YueZ, WangM. Effect of initial γ/γ′ microstructure on creep of single crystal nickel-based superalloys: A phase-field simulation incorporating dislocation dynamics [J]. Journal of Alloys and Compounds, 2019, 779: 326-334

[2]

LinY, WuX, ChenX, et al. . EBSD study of a hot deformed nickel-based superalloy [J]. Journal of Alloys and Compounds, 2015, 640: 101-113

[3]

JiaZ, GaoZ, JiJ, et al. . Study of the dynamic recrystallization process of the Inconel625 alloy at a high strain rate [J]. Materials (Basel, Switzerland), 2019, 12(3): 510

[4]

AntonovS, DetroisM, HelminkR C, et al. . Precipitate phase stability and compositional dependence on alloying additions in γ-γ′-δ-η] Ni-base superalloys [J]. Journal of Alloys and Compounds, 2015, 626: 76-86

[5]

WenD, LinY, LiX, et al. . Hot deformation characteristics and dislocation substructure evolution of a nickel-base alloy considering effects of S phase [J]. Journal of Alloys and Compounds, 2018, 7641008-1020

[6]

DetroisM, AntonovS, TinS, et al. . Hot deformation behavior and flow stress modeling of a Ni-based superalloy [J]. Materials Characterization, 2019, 157: 109915

[7]

SaniS A, ArabiH, EbrahimiG R. Hot deformation behavior and DRX mechanism in a γ-γ/cobalt-based superalloy [J]. Materials Science and Engineering A, 2019, 764138165

[8]

NingY, YaoZ, LeiY, et al. . Hot deformation behavior of the post-cogging FGH4096 superalloy with fine equiaxed microstructure [J]. Materials Characterization, 2011, 62(9): 887-893

[9]

ShiZ, YanX, DuanC, et al. . Effect of strain rate on hot deformation characteristics of GH690 superalloy [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(3): 538-550

[10]

ChenM, ZouZ, LinY, et al. . Hot deformation behaviors of a solution-treated Ni-based superalloy under constant and changed strain rates [J]. Vacuum, 2018, 155531-538

[11]

SahithyaK, BalasundarI, PantP, et al. . Deformation behaviour of an as-cast nickel base superalloy during primary hot working above and below the gamma prime solvus [J]. Materials Science and Engineering A, 2019, 754: 521-534

[12]

GengP, QinG, ZhouJ, et al. . Hot deformation behavior and constitutive model of GH4169 superalloy for linear friction welding process [J]. Journal of Manufacturing Processes, 2018, 32: 469-481

[13]

XuZ, LiM, LiH. Plastic flow behavior of superalloy GH696 during hot deformation [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(3): 712-721

[14]

LiuF, ChenJ, DongJ, et al. . The hot deformation behaviors of coarse, fine and mixed grain for Udimet 720Li superalloy [J]. Materials Science and Engineering A, 2016, 651: 102-115

[15]

LinY, DengJ, JiangY, et al. . Hot tensile deformation behaviors and fracture characteristics of a typical Ni-based superalloy [J]. Materials & Design, 2014, 55: 949-957

[16]

TanL, HeG, LiY, et al. . Flow behaviors and microstructural evolutions of a novel high-Co powder metallurgy superalloy during hot working [J]. Journal of Materials Processing Technology, 2018, 262: 221-231

[17]

TanY B, MaY H, ZhaoF. Hot deformation behavior and constitutive modeling of fine grained inconel 718 superalloy [J]. Journal of Alloys and Compounds, 2018, 741: 85-96

[18]

LinY, WenD, DengJ, et al. . Constitutive models for high-temperature flow behaviors of a Ni-based superalloy [J]. Materials & Design, 2014, 59: 115-123

[19]

NingY, YaoZ, YangZ, et al. . Flow behavior and hot workability of FGH4096 superalloys with different initial microstructures by using advanced processing maps [J]. Materials Science and Engineering A, 2012, 531: 91-97

[20]

ZhangC, ZhangL, ShenW, et al. . The processing map and microstructure evolution of Ni-Cr-Mo-based C276 superalloy during hot compression [J]. Journal of Alloys and Compounds, 2017, 728: 1269-1278

[21]

WangL, LiuF, ChengJ J, et al. . Hot deformation characteristics and processing map analysis for Nickel-based corrosion resistant alloy [J]. Journal of Alloys and Compounds, 2015, 623: 69-78

[22]

ShiZ, YanX, DuanC, et al. . Hot deformation behavior of GH4945 superalloy using constitutive equation and processing map [J]. Journal of Iron and Steel Research, International, 2017, 24(6): 625-633

[23]

JiangH, DongJ, ZhangM, et al. . Hot deformation characteristics of Alloy 617B nickel-based superalloy: A study using processing map [J]. Journal of Alloys and Compounds, 2015, 647: 338-350

[24]

NingY, YaoZ, LiangX, et al. . Flow behavior and constitutive model for Ni-20.0Cr-2.5Ti-1.5Nb-1.0Al superalloy compressed below γ′ -transus temperature [J]. Materials Science and Engineering A, 2012, 551: 7-12

[25]

KongY, ChangP, LiQ, et al. . Hot deformation characteristics and processing map of nickelbased C276 superalloy [J]. Journal of Alloys and Compounds, 2015, 622: 738-744

[26]

JiaZ, GaoZ, JiJ, et al. . Evolution of twin boundaries and contribution to dynamic recrystallization and grain growth of inconel 625 [J]. Advanced Engineering Materials, 2019, 21(9): 1900426

[27]

JiaZ, SunX, JiJ, et al. . Hot deformation behavior and dynamic recrystallization nucleation mechanisms of inconel 625 during hot compressive deformation [J]. Advanced Engineering Materials, 2021, 2332001048

[28]

LiJ, ZhaoZ, BaiP, et al. . Microstructural evolution and mechanical properties of IN718 alloy fabricated by selective laser melting following different heat treatments [J]. Journal of Alloys and Compounds, 2019, 772: 861-870

[29]

XieB, YuH, ShengT, et al. . DDRX and CDRX of an as-cast nickel-based superalloy during hot compression at γ′ sub-/super-solvus temperatures [J]. Journal of Alloys and Compounds, 2019, 80316-29

[30]

KunzeK, EtterT, GrässlinJ, et al. . Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM) [J]. Materials Science and Engineering A, 2015, 620: 213-222

[31]

GaoS, HouJ, YangF, et al. . Effect of Ta on microstructural evolution and mechanical properties of a solid-solution strengthening cast Ni-based alloy during long-term thermal exposure at 700 °C [J]. Journal of Alloys and Compounds, 2017, 729: 903-913

[32]

LuoY, HengY, WangY, et al. . Dynamic recrystallization behavior of TA15 titanium alloy under isothermal compression during hot deformation [J]. Advances in Materials Science and Engineering, 2014, 2014: 413143

[33]

HeG, LiuF, HuangL, et al. . Microstructure evolutions and nucleation mechanisms of dynamic recrystallization of a powder metallurgy Ni-based superalloy during hot compression [J]. Materials Science and Engineering A, 2016, 677496-504

[34]

JiangH, DongJ, ZhangM, et al. . Evolution of twins and substructures during low strain rate hot deformation and contribution to dynamic recrystallization in alloy 617B [J]. Materials Science and Engineering A, 2016, 649: 369-381

[35]

SinghA R P, NagS, ChattopadhyayS, et al. . Mechanisms related to different generations of γ′ precipitation during continuous cooling of a nickel base superalloy [J]. Acta Materialia, 2013, 61(1): 280-293

[36]

TuriM L, WeatherlyG, PurdyG. Grain boundary precipitation of γ in γ′ Ni3(Al, Ti) [J]. Materials Science and Engineering A, 1995, 192–193: 945-949

[37]

LiF, FuR, YinF, et al. . Impact of γ′(Ni3(Al, Ti)) phase on dynamic recrystallization of a Ni-based disk superalloy during isothermal compression [J]. Journal of Alloys and Compounds, 2017, 693: 1076-1082

[38]

ZhuQ, ChengL, WangC, et al. . Effect of S phase on size effect in microtensile deformation of a nickel-based superalloy [J]. Materials Science and Engineering A, 2019, 766: 138405

[39]

YinB, XieG, LouL, et al. . Abnormal increase of TCP phase during heat treatment in a Ni-based single crystal superalloy [J]. Scripta Materialia, 2019, 1731-4

[40]

TangL, LiangJ, CuiC, et al. . Precipitation and phase transformation mechanism of additive manufactured Ni-Co base superalloy [J]. Materials Characterization, 2019, 151: 252-259

[41]

GhicaC, SolísC, MunkeJ, et al. . HRTEM analysis of the high-temperature phases of the newly developed high-temperature Ni-base superalloy VDM 780 premium [J]. Journal of Alloys and Compounds, 2020, 814: 152157

[42]

LiY, WangL, ZhangG, et al. . Creep deformation related to γ′ phase cutting at high temperature of a [111] oriented nickel-base single crystal superalloy [J]. Materials Science and Engineering A, 2019, 763138162

[43]

WuY, LiuZ, QinX, et al. . Effect of initial state on hot deformation and dynamic recrystallization of Ni-Fe based alloy GH984G for steam boiler applications [J]. Journal of Alloys and Compounds, 2019, 795370-384

[44]

CoryellS P, FindleyK O, MatayaM C, et al. . Evolution of microstructure and texture during hot compression of a Ni-Fe-Cr superalloy [J]. Metallurgical and Materials Transactions A, 2012, 43(2): 633-649

[45]

PoeltP, SommitschC, MitscheS, et al. . Dynamic recrystallization of Ni-base alloys—Experimental results and comparisons with simulations [J]. Materials Science and Engineering A, 2006, 420(1–2): 306-314

[46]

MandalS, BhaduriA K, SubramanyaS V. Influence of state of stress on dynamic recrystallization in a titanium-modified austenitic stainless steel [J]. Metallurgical and Materials Transactions A, 2012, 43(2): 410-414

[47]

EvansN D, MaziaszP J, ShingledeckerJ P, et al. . Microstructure evolution of alloy 625 foil and sheet during creep at 750 °C [J]. Materials Science and Engineering A, 2008, 498(1–2): 412-420

[48]

LinY, HeD, ChenM, et al. . EBSD analysis of evolution of dynamic recrystallization grains and S phase in a nickel-based superalloy during hot compressive deformation [J]. Materials & Design, 2016, 97: 13-24

[49]

GaoW, BelyakovA, MiuraH, et al. . Dynamic recrystallization of copper polycrystals with different purities [J]. Materials Science and Engineering A, 1999, 265(1–2): 233-239

[50]

WangY, ShaoW Z, ZhenL, et al. . Microstructure evolution during dynamic recrystallization of hot deformed superalloy 718 [J]. Materials Science and Engineering A, 2008, 486(1–2): 321-332

[51]

WuY, ZhangM, XieX, et al. . Hot deformation characteristics and processing map analysis of a new designed nickel-based alloy for 700 °C A-USC power plant [J]. Journal of Alloys and Compounds, 2016, 656: 119-131

[52]

DudovaN, BelyakovA, SakaiT, et al. . Dynamic recrystallization mechanisms operating in a Ni-20%Cr alloy under hot-to-warm working [J]. Acta Materialia, 2010, 58(10): 3624-3632

[53]

WangM J, SunC Y, FuM W, et al. . Study on the dynamic recrystallization mechanisms of Inconel 740 superalloy during hot deformation [J]. Journal of Alloys and Compounds, 2020, 820: 153325

[54]

PradhanS K, MandalS, AthreyaC N, et al. . Influence of processing parameters on dynamic recrystallization and the associated annealing twin boundary evolution in a nickel base superalloy [J]. Materials Science and Engineering A, 2017, 70049-58

[55]

WangY, ShaoW Z, ZhenL, et al. . Flow behavior and microstructures of superalloy 718 during high temperature deformation [J]. Materials Science and Engineering A, 2008, 497(1–2): 479-486

[56]

MahajanS. Formation of annealing twins in f.c.c. crystals [J]. Acta Materialia, 1997, 45(6): 2633-2638

AI Summary AI Mindmap
PDF

205

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/