Laser surface functionalization to achieve extreme surface wetting conditions and resultant surface functionalities
Qing-hua Wang , Hui-xin Wang
Journal of Central South University ›› 2022, Vol. 29 ›› Issue (10) : 3217 -3247.
Laser surface functionalization to achieve extreme surface wetting conditions and resultant surface functionalities
Wetting condition of micro/nanostructured surface has received tremendous attention due to the potential applications in commercial, industrial, and military areas. Surfaces with extreme wetting properties, e. g., superhydrophobic or superhydrophilic, are extensively employed due to their superior anti-icing, drag reduction, enhanced boiling heat transfer, self-cleaning, and anti-bacterial properties depending on solid-liquid interfacial interactions. Laser-based techniques have gained popularity in recent years to create micro/nano-structured surface owing to their high flexibility, system precision, and ease for automation. These techniques create laser induced periodic surface structures (LIPSS) or hierarchical structures on substrate material. However, micro/nanostructures alone cannot attain the desired wettability. Subsequent modification of surface chemistry is essentially needed to achieve target extreme wettability. This review paper aims to provide a comprehensive review for both laser texturing techniques and the following chemistry modification methods. Recent research progress and fundamental mechanisms of surface structure generation via different types of lasers and various chemistry modification methods are discussed. The complex combination between the laser texturing and surface chemistry modification methods to decide the final wetting condition is presented. More importantly, surface functionalities of these surfaces with extreme wetting properties are discussed. Lastly, prospects for future research are proposed and discussed.
laser surface modification / extreme wettability / chemistry modification / surface functionality
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
GOSE J W, GOLOVIN K, TUTEJA A, et al. Experimental investigation of turbulent skin-friction drag reduction using superhydrophobic surfaces [C]//31st Symposium on Naval Hydrodynamics, 2016(September): 11–16. |
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
|
| [137] |
|
| [138] |
|
| [139] |
|
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
|
| [145] |
|
| [146] |
|
| [147] |
|
| [148] |
|
| [149] |
|
| [150] |
YAN Huang-ping, ABDUL RASHID M R B, KHEW S Y, et al. Realization of laser textured brass surface via temperature tuning for surface wettability transition [J]. Opto-Electronic Engineering, 2017(6): 587–592. |
| [151] |
|
| [152] |
|
| [153] |
|
| [154] |
|
| [155] |
|
| [156] |
|
| [157] |
|
| [158] |
|
| [159] |
|
| [160] |
|
| [161] |
|
| [162] |
|
| [163] |
|
| [164] |
|
| [165] |
|
| [166] |
|
| [167] |
|
| [168] |
|
| [169] |
|
| [170] |
|
| [171] |
CHEN Lei, LIU Ze-lin, GUO Chuan, et al. Nanosecond laser-induced controllable periodical surface structures on silicon [J]. Chinese Optics Letters, 2022(1): 186–191. |
| [172] |
|
| [173] |
|
| [174] |
|
| [175] |
|
| [176] |
|
| [177] |
|
| [178] |
|
| [179] |
|
| [180] |
|
| [181] |
|
| [182] |
|
| [183] |
|
| [184] |
|
| [185] |
|
| [186] |
|
| [187] |
|
| [188] |
|
| [189] |
|
| [190] |
WANG Qing-hua, WANG Hui-xin. Tuning water adhesion of superhydrophobic surface by way of facile laser-chemical hybrid process [J]. Surface Innovations, 2021: 2100042. |
| [191] |
|
| [192] |
|
| [193] |
|
| [194] |
|
| [195] |
|
| [196] |
|
| [197] |
|
| [198] |
|
| [199] |
|
| [200] |
|
| [201] |
|
| [202] |
|
| [203] |
|
| [204] |
|
| [205] |
|
| [206] |
|
| [207] |
|
| [208] |
|
| [209] |
|
| [210] |
|
| [211] |
|
| [212] |
|
| [213] |
|
| [214] |
|
| [215] |
|
| [216] |
|
| [217] |
HASSEBROOK A, LUCIS M J, SHIELD J E, et al. Thermal stability of rare earth oxide coated superhydrophobic microstructured metallic surfaces [C]//Proceedings of the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels (ICNMM2015). San Francisco, California, USA. 2015: 1–7. |
| [218] |
|
| [219] |
|
| [220] |
|
| [221] |
|
| [222] |
|
| [223] |
|
| [224] |
|
| [225] |
|
| [226] |
|
| [227] |
|
| [228] |
|
| [229] |
|
| [230] |
|
| [231] |
|
| [232] |
|
| [233] |
|
| [234] |
|
| [235] |
|
| [236] |
|
| [237] |
|
/
| 〈 |
|
〉 |