First-principles computational studies on Na+ diffusion in Li-doped P3-type NaMnO2 as cathode material for Na-ion batteries

Yu Zhang , Jie Li , Hong-liang Zhang , Ke Du , Xiang-yuan Zhou , Jing-kun Wang

Journal of Central South University ›› 2022, Vol. 29 ›› Issue (9) : 2930 -2939.

PDF
Journal of Central South University ›› 2022, Vol. 29 ›› Issue (9) : 2930 -2939. DOI: 10.1007/s11771-022-5137-z
Article

First-principles computational studies on Na+ diffusion in Li-doped P3-type NaMnO2 as cathode material for Na-ion batteries

Author information +
History +
PDF

Abstract

Na-ion diffusion kinetics is a key factor that decided the charge/discharge rate of the electrode materials in Na-ion batteries. In this work, two extreme concentrations of NaMnO2 and Na2/3Li1/6Mn5/6O2 are considered, namely, the vacancy migration of Na ions in the fully intercalated and the migration of Na ions in the fully de-intercalated. The Na-vacancy and Na+ distribution in NaMnO2 migrated along oxygen dumbbell hop (ODH) and tetrahedral site hop (TSH), and the migration energy barriers were 0.374 and 0.296 eV, respectively. In NaLi1/6Mn5/6O2, the inhomogeneity of Li doping leads to the narrowing of the interlayer spacing by 0.9% and the increase of the energy barrier by 53.8%. On the other hand, due to the alleviation of Jahn-Teller effect of neighboring Mn, the bonding strength of Mn-O was enhanced, so that the energy barrier of path 2–3 in Mn-L1 and Mn-L2 was the lowest, which was 0.234 and 0.424 eV, respectively. In Na1/6Li1/6Mn5/6O2, the migration energy barriers of Na-L2 and Na-L3 are 1.233 and 0.779 eV, respectively, because Li+ migrates from the transition (TM) layer to the alkali metal (AM) layer with Na+ migration, which requires additional energy.

Keywords

density functional theory / nudged elastic band / diffusion kinetics / Jahn-Teller distortion / sodium migration

Cite this article

Download citation ▾
Yu Zhang, Jie Li, Hong-liang Zhang, Ke Du, Xiang-yuan Zhou, Jing-kun Wang. First-principles computational studies on Na+ diffusion in Li-doped P3-type NaMnO2 as cathode material for Na-ion batteries. Journal of Central South University, 2022, 29(9): 2930-2939 DOI:10.1007/s11771-022-5137-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DresselhausM S, ThomasI L. Alternative energy technologies [J]. Nature, 2001, 414(6861): 332-337

[2]

CroyJ R, GallagherK G, BalasubramanianM, et al.. Quantifying hysteresis and voltage fade in xLi2MnO3 · (1 − x)LiMn0.5Ni0.5O2 electrodes as a function of Li2MnO3 content [J]. Journal of the Electrochemical Society A, 2013, 161(3): 318-325

[3]

DuK, ZhuJ, HuG, et al.. Exploring reversible oxidation of oxygen in a manganese oxide [J]. Energy & Environmental Science, 2016, 9(8): 2575-2577

[4]

SeoD H, LeeJ, UrbanA, et al.. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials [J]. Nature Chemistry, 2016, 8(7): 692-697

[5]

MaC, AlvaradoJ, XuJ, et al.. Exploring oxygen activity in the high energy P2-type Na0.78Ni0.23Mn0.69O2 cathode material for Na-ion batteries [J]. Journal of the American Chemical Society, 2017, 139(13): 4835-4845

[6]

QiY, TongZ, ZhaoJ, et al.. Scalable room-temperature synthesis of multi-shelled Na3(VOPO4)2F microsphere cathodes [J]. Joule, 2018, 2(11): 2348-2363

[7]

RongX, LiuJ, HuE, et al.. Structure-induced reversible anionic redox activity in Na layered oxide cathode [J]. Joule, 2018, 2(1): 125-140

[8]

LuoK, RobertsM R, HaoR, et al.. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen [J]. Nature Chemistry, 2016, 8(7): 684-691

[9]

Van Der VenA, CederG. Lithium diffusion in layered LixCoO2 [J]. Electrochemical and Solid-State Letters, 1999, 3(7): 301

[10]

KongF, LongoR C, ParkM S, et al.. Ab initio study of doping effects on LiMnO2 and Li2MnO3 cathode materials for Li-ion batteries [J]. Journal of Materials Chemistry A, 2015, 3168489-8500

[11]

ZhengL, WangZ, WuM, et al.. Jahn–Teller type small polaron assisted Na diffusion in NaMnO2 as a cathode material for Na-ion batteries [J]. Journal of Materials Chemistry A, 2019, 7(11): 6053-6061

[12]

ShuG J, ChouF C. Sodium-ion diffusion and ordering in single-crystal P2-NaxCoO2 [J]. Physical Review B, 2008, 78(5): 052101

[13]

BaggettoL, GaneshP, SunC, et al.. Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: Experiment and theory [J]. Journal of Materials Chemistry A, 2013, 1277985

[14]

XuY, ZhuY, LiuY, et al.. Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries [J]. Advanced Energy Materials, 2013, 31128-133

[15]

ZhangZ, WuD, ZhangX, et al.. First-principles computational studies on layered Na2Mn3O7 as a high-rate cathode material for sodium ion batteries [J]. Journal of Materials Chemistry A, 2017, 5(25): 12752-12756

[16]

ZhangY, LiJ, GongY, et al.. Exploring oxygen anion charge compensation mechanism in P3-type Na2/3∣xLi1/6Mn5/6O2 cathode material by density function theory [J]. Chemical Physics Letters, 2021, 762: 138016

[17]

LaasonenK, CarR, LeeC, et al.. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics [J]. Physical Review B, Condensed Matter, 1991, 43(8): 6796-6799

[18]

PerdewJ P, BurkeK, ErnzerhofM. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865-3868

[19]

LeeD H, XuJ, MengY S. An advanced cathode for Na-ion batteries with high rate and excellent structural stability [J]. Physical Chemistry Chemical Physics, 2013, 15(9): 3304-3312

[20]

SaubanereM, MccallaE, TarasconJ M. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries [J]. Energy Environmental Science, 2016, 9(3): 984-991

[21]

HouseR A, MaitraU, Pérez-OsorioM A, et al.. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes [J]. Nature, 2020, 577(7791): 502-508

[22]

FrischU, HasslacherB, PomeauY. Lattice-gas automata for the navier-stokes equation [J]. Physical Review Letters, 1986, 56(14): 1505-1508

[23]

HeX, LuoL. Lattice boltzmann model for the incompressible Navier-Stokes equation [J]. Journal of Statistical Physics, 1997, 88(3/4): 927-944

[24]

KataokaR, KittaM, OzakiH, et al.. Spinel manganese oxide: A high capacity positive electrode material for the sodium ion battery [J]. Electrochimica Acta, 2016, 212458-464

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/