Vacuum deposited film growth, morphology and interfacial electronic structures of 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene (C8-BTBT)

Jun-hua Wei , Dong-mei Niu , Yong-li Gao

Journal of Central South University ›› 2022, Vol. 29 ›› Issue (4) : 1041 -1061.

PDF
Journal of Central South University ›› 2022, Vol. 29 ›› Issue (4) : 1041 -1061. DOI: 10.1007/s11771-022-4996-7
Article

Vacuum deposited film growth, morphology and interfacial electronic structures of 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene (C8-BTBT)

Author information +
History +
PDF

Abstract

Interfaces play critical roles in electronic devices and provide great diversity of film morphology and device performance. We retrospect the substrate mediated vacuum film growth of benchmark high mobility material 2, 7-dioctyl[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) and the interface electronic structures. The film growth of C8-BTBT molecules is diversified depending on the substrate-molecule and molecule-molecule interactions. On atomic smooth substrates C8-BTBT film grows in layer-by-layer mode while on coarse substrate it grows in islands mode. The initial molecular layer at dielectric, semiconductor and conductive substrates displays slight different lattice structure. The initial molecule orientation depends on the substrate and will gradually change to standing up configuration as in bulk phase. C8-BTBT behaves as electron donor when contacting with dielectric and stable conductive materials. This usually induces a dipole layer pointing to C8-BTBT and an upward bend bending in C8-BTBT side toward the interface. Although it is air stable, C8-BTBT is chemically reactive with some transition metals and compounds. The orientation change from lying down to standing up in the film usually leads to decrease of ionization potential. The article provides insights to the interface physical and chemical processes and suggestions for optimal design and fabrication of C8-BTBT based devices.

Keywords

interface / film morphology / packing configuration / growth mode / electronic structure / chemical reaction / interface dipole

Cite this article

Download citation ▾
Jun-hua Wei, Dong-mei Niu, Yong-li Gao. Vacuum deposited film growth, morphology and interfacial electronic structures of 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene (C8-BTBT). Journal of Central South University, 2022, 29(4): 1041-1061 DOI:10.1007/s11771-022-4996-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

TangC W. Two-layer organic photovoltaic cell [J]. Applied Physics Letters, 1986, 48(2): 183-185

[2]

BurroughesJ H, BradleyD D C, BrownA R, et al.. Light-emitting diodes based on conjugated polymers [J]. Nature, 1990, 347(6293): 539-541

[3]

GelinckG H, HuitemaH E A, van VeenendaalE, et al.. Flexible active-matrix displays and shift registers based on solution-processed organic transistors [J]. Nature Materials, 2004, 3(2): 106-110

[4]

RogersJ A, BaoZ N. Printed plastic electronics and paperlike displays [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2002, 40(20): 3327-3334

[5]

ZhangF-J, HuY-B, SchuettfortT, et al.. Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed N-channel organic thin-film transistors with mobility of up to 3.50 cm2·V−1·s−1 [J]. Journal of the American Chemical Society, 2013, 135(6): 2338-2349

[6]

KimC H, HlaingH, PayneM M, et al.. Difluorinated 6, 13-bis(triisopropylsilylethynyl)pentacene: Synthesis, crystallinity, and charge-transport properties [J]. Chem Phys Chem, 2015, 16(6): 1251-1257

[7]

IrfanA. Push-pull effect on the charge transport characteristics in V-shaped organic semiconductor materials [J]. Bulletin of Materials Science, 2021, 44(1): 1-8

[8]

SinhaN, PakhiraS. Tunability of the electronic properties of covalent organic frameworks [J]. ACS Applied Electronic Materials, 2021, 3(2): 720-732

[9]

FacchettiA. Semiconductors for organic transistors [J]. Materials Today, 2007, 10(3): 28-37

[10]

YuanY, GiriG, AyznerA L, et al.. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method [J]. Nature Communications, 2014, 5: 3005

[11]

TakimiyaK, OsakaI, MoriT, et al.. Organic semiconductors based on [1]benzothieno[3, 2-b] [1] benzothiophene substructure [J]. Accounts of Chemical Research, 2014, 47(5): 1493-1502

[12]

LiuX-L, LuoX-G, NanH-Y, et al.. Epitaxial ultrathin organic crystals on graphene for high efficiency phototransistors [J]. Advanced Materials, 2016, 28(26): 5200-5205

[13]

TakimiyaK, ShinamuraS, OsakaI, et al.. Thienoacene-based organic semiconductors [J]. Advanced Materials, 2011, 23(38): 4347-4370

[14]

MitsuiC, YamagishiM, ShikataR, et al.. Oxygen- and sulfur-bridged bianthracene V-shaped organic semiconductors [J]. Bulletin of the Chemical Society of Japan, 2017, 90(8): 931-938

[15]

KraftU, AnthonyJ E, RipaudE, et al.. Low-voltage organic transistors based on tetraceno[2, 3-b]thiophene: Contact resistance and air stability [J]. Chemistry of Materials, 2015, 27(3): 998-1004

[16]

ZhouY-C, DengW-Q, ZhangH-L. Phonon-electron coupling and tunneling effect on charge transport in organic semi-conductor crystals of Cn-BTBT [J]. The Journal of Chemical Physics, 2016, 145(10): 104108

[17]

EbataH, IzawaT, MiyazakiE, et al.. Highly soluble[1] benzothieno[3, 2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors [J]. Journal of the American Chemical Society, 2007, 1295115732-15733

[18]

CaoJ-P, WeiX-Y, CheY-X, et al.. Polysiloxane — poly(vinyl alcohol) composite dielectrics for high-efficiency low voltage organic thin film transistors [J]. Journal of Materials Chemistry C, 2019, 7(16): 4879-4886

[19]

UemuraT, HiroseY, UnoM, et al.. Very high mobility in solution-processed organic thin-film transistors of highly ordered [1]benzothieno[3, 2-b]benzothiophene derivatives [J]. Applied Physics Express, 2009, 2(11): 111501

[20]

WuH, IinoH, HannaJ I. Scalable ultrahigh-speed fabrication of uniform polycrystalline thin films for organic transistors [J]. ACS Applied Materials & Interfaces, 2020, 122629497-29504

[21]

XieP-S, LiuT-J, HeP, et al.. The effect of air exposure on device performance of flexible C8-BTBT organic thin-film transistors with hygroscopic insulators [J]. Science China: Materials, 2020, 63(12): 2551-2559

[22]

WangL, WangC, YuX-X, et al.. Two-dimensional organic single-crystalline p-n junctions for ambipolar field transistors [J]. Science China: Materials, 2020, 63(1): 122-127

[23]

YuS G, JoY R, KimM W, et al.. Growth kinetics of single crystalline C8-BTBT rods via solvent vapor annealing [J]. The Journal of Physical Chemistry C, 2020, 124(27): 14873-14880

[24]

WuG, ChenC, LiuS, et al.. Solution-grown organic single-crystal field-effect transistors with ultrahigh response to visible-blind and deep UV signals [J]. Advanced Electronic Materials, 2015, 1(8): 1500136

[25]

EndoT, NagaseT, KobayashiT, et al.. Solution-processed dioctylbenzothienobenzothiophene-based top-gate organic transistors with high mobility, low threshold voltage, and high electrical stability [J]. Applied Physics Express, 2010, 312121601

[26]

IzawaT, MiyazakiE, TakimiyaK. Molecular ordering of high-performance soluble molecular semiconductors and re-evaluation of their field-effect transistor characteristics [J]. Advanced Materials, 2008, 20183388-3392

[27]

HuangY-L, SunJ, ZhangJ-D, et al.. Controllable thin-film morphology and structure for 2, 7-dioctyl[1]benzothieno[3, 2-b] [1]benzothiophene (C8BTBT) based organic field-effect transistors [J]. Organic Electronics, 2016, 3673-81

[28]

JoJ W, KangJ-G, KimK T, et al.. Nanocluster-based ultralow-temperature driven oxide gate dielectrics for high-performance organic electronic devices [J]. Materials, 2020, 13(23): 5571

[29]

TuW-W, LiuT, ZhangZ-Q, et al.. Ultra-wide bandgap organic acceptor material and its application in organic UV photodetector [J]. Synthetic Metals, 2016, 219: 20-25

[30]

ElgazzarE, OzdemirM, UstaH, et al.. Logarithmic organic photodetectors [J]. Synthetic Metals, 2015, 210288-296

[31]

TongS-C, SunJ, WangC-H, et al.. High-performance broadband perovskite photodetectors based on CH3NH3PbI3/C8BTBT heterojunction [J]. Advanced Electronic Materials, 2017, 3(7): 1700058

[32]

LiX, XieP-S, MoX-D, et al.. A highperformance and long-term air-stable CH3NH3PbI3/C8BTBT heterojunction photodetector fabricated via chemical vapor deposition [J]. Physica Status Solidi (RRL)—Rapid Research Letters, 2021, 1522000479

[33]

GeddaM, YengelE, FaberH, et al.. Ruddlesden-popper-phase hybrid halide perovskite/small-molecule organic blend memory transistors [J]. Advanced Materials, 2021, 3372003137

[34]

LiQ-X, WangT-Y, WangX-L, et al.. Flexible organic field-effect transistor arrays for wearable neuromorphic device applications [J]. Nanoscale, 2020, 124523150-23158

[35]

MeyersT, VidorF F, PulsC, et al.. Low-voltage C8-BTBT thin-film transistors for flexible electronics [J]. Materials Today: Proceedings, 2017, 4: S232-S236

[36]

XieP-S, LiuT-J, SunJ, et al.. Solution-processed ultra-flexible C8-BTBT organic thin-film transistors with the corrected mobility over 18 cm2/(V s) [J]. Science Bulletin, 2020, 65(10): 791-795

[37]

XiaH-Y, TongS-C, ZhangC-J, et al.. Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C8BTBT bulk heterojunction [J]. Applied Physics Letters, 2018, 112(23): 233301

[38]

KobayashiH, KobayashiN, HosoiS, et al.. Hopping and band mobilities of pentacene, rubrene, and 2, 7-dioctyl[1] benzothieno[3, 2-b] [1]benzothiophene (C8-BTBT) from first principle calculations [J]. The Journal of Chemical Physics, 2013, 1391014707

[39]

YuanY-B, HuangJ-S. Ultrahigh gain, low noise, ultraviolet photodetectors with highly aligned organic crystals [J]. Advanced Optical Materials, 2016, 42264-270

[40]

LiuC, MinariT, LiY, et al.. Direct formation of organic semiconducting single crystals by solvent vapor annealing on a polymer base film [J]. Journal of Materials Chemistry, 2012, 22(17): 8462

[41]

ReselR. Crystallographic studies on hexaphenyl thin films—A review [J]. Thin Solid Films, 2003, 433121-11

[42]

ChungH, DiaoY. Polymorphism as an emerging design strategy for high performance organic electronics [J]. Journal of Materials Chemistry C, 2016, 4(18): 3915-3933

[43]

JonesA O F, GeertsY H, KarpinskaJ, et al.. Substrate-induced phase of a [1]benzothieno[3, 2-b] benzothiophene derivative and phase evolution by aging and solvent vapor annealing [J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1868-1873

[44]

BouchomsI P M, SchoonveldW A, VrijmoethJ, et al.. Morphology identification of the thin film phases of vacuum evaporated pentacene on SIO2 substrates [J]. Synthetic Metals, 1999, 104(3): 175-178

[45]

WangS-T, LyuL, NiuD-M, et al.. Breaking down and reconstruction of Islands during the film growth of CuPc on HOPG [J]. Applied Physics Letters, 2019, 114(24): 241602

[46]

HeD, ZhangY, WuQ, et al.. Two-dimensional quasifreestanding molecular crystals for high-performance organic field-effect transistors [J]. Nature Communications, 2014, 5: 5162

[47]

XuR, HeD-W, ZhangY-H, et al.. Unveiling the structural origin of the high carrier mobility of a molecular monolayer on boron nitride [J]. Physical Review B, 2014, 9022224106

[48]

LyuL, NiuD-M, XieH-P, et al.. The correlations of the electronic structure and film growth of 2, 7-diocty[1]benzothieno[3, 2-b]benzothiophene (C8-BTBT) on SiO2 [J]. Physical Chemistry Chemical Physics: PCCP, 2017, 1921669-1676

[49]

HiroshibaN, HayakawaR, WakayamaY. Onterrace graphoepitaxy for remarkable one-dimensional growth of 2, 7-dioctyl[1]benzothieno[3, 2-b]benzothiophene (C8-BTBT) nanowires [J]. Organic Electronics, 2019, 7433-36

[50]

KiguchiM, NakayamaM, ShimadaT, et al.. Electricfield-induced charge injection or exhaustion in organic thin film transistor [J]. Physical Review B, 2005, 71(3): 035332

[51]

LiuC, XuY, LiY, et al.. Critical impact of gate dielectric interfaces on the contact resistance of high-performance organic field-effect transistors [J]. The Journal of Physical Chemistry C, 2013, 1172312337-12345

[52]

ChoeY S, YiM H, KimJ H, et al.. Crosslinked polymer-mixture gate insulator for high-performance organic thin-film transistors [J]. Organic Electronics, 2016, 36: 171-176

[53]

HeD-W, PanY-M, NanH-Y, et al.. A van der Waals pn heterojunction with organic/inorganic semiconductors [J]. Applied Physics Letters, 2015, 107(18): 183103

[54]

LiuX-L, BallaI, SangwanV K, et al.. Ultrahigh vacuum self-assembly of rotationally commensurate C8-BTBT/MoS2/graphene mixed-dimensional heterostructures [J]. Chemistry of Materials, 2019, 3151761-1766

[55]

PazokiS, FrickJ, DoughertyD B. Dynamics of domain boundaries at metal-organic interfaces [J]. The Journal of Chemical Physics, 2021, 154(12): 124704

[56]

IkedaT, TaharaK, KadoyaT, et al.. Ferrocene on insulator: Silane coupling to a SiO2 surface and influence on electrical transport at a buried interface with an organic semiconductor layer [J]. Langmuir, 2020, 36215809-5819

[57]

MohA M, SasakiK, ShinagawaT, et al.. Preferred orientation of 2, 7-dioctyl[1]benzothieno[3, 2-b] [1] benzothiophene molecules on inorganic single-crystal substrates with various orientations [J]. Japanese Journal of Applied Physics, 2018, 57(8S3): 08RE04

[58]

GaoY-L. Surface analytical studies of interfaces in organic semiconductor devices [J]. Materials Science and Engineering R: Reports, 2010, 68339-87

[59]

ZhuX Y. Electronic structure and electron dynamics at molecule-metal interfaces: Implications for molecule-based electronics [J]. Surface Science Reports, 2004, 56(12): 1-83 in Chinese)

[60]

ZhangH, NiuD-M, L, et al.. Thickness-dependent electronic structure of the interface of 2, 7-dioctyl [1]benzothieno[3, 2-b] [1]benzothiophene/Ni(100) [J]. Acta Physica Sinica, 2016, 65(4): 047902

[61]

WangS-T, NiuD-M, LyuL, et al.. Interface electronic structure and morphology of 2, 7-dioctyl[1] benzothieno[3, 2-b]benzothiophene (C8-BTBT) on Au film [J]. Applied Surface Science, 2017, 416: 696-703

[62]

ZhangY-H, NiuD-M, LyuL, et al.. Adsorption, film growth, and electronic structures of 2, 7-dioctyl[1] benzothieno- [3, 2-b] [1]benzothiophen-e (C8-BTBT) on Cu (100) [J]. Acta Physico-Chimica Sinica, 2016, 65(15): 157901 in Chinese)

[63]

LiL, TongS-C, ZhaoY, et al.. Interfacial electronic structures of photodetectors based on C8BTBT/perovskite [J]. ACS Applied Materials & Interfaces, 2018, 102420959-20967

[64]

ZhuM-L, LyuL, NiuD-M, et al.. Effect of a MoO3 buffer layer between C8-BTBT and Co(100) single-crystal film [J]. RSC Advances, 2016, 6(113): 112403-112408

[65]

ZhuM-L, LyuL, NiuD-M, et al.. Interfacial chemical and electronic structure of cobalt deposition on 2, 7-dioctyl[1]benzothieno[3, 2-b]benzothiophene (C8-BTBT) [J]. Applied Surface Science, 2017, 402142-146

[66]

XieH-P, NiuD-M, ZhaoY, et al.. Photoemission studies of C8-BTBT/La0.67Sr0.33MnO3 interface [J]. Synthetic Metals, 2020, 260116261

[67]

LuY, HanQ, ZhaoY, et al.. Vapor-deposited all inorganic CsPbBr3 thin films and interface modification with C8-BTBT for high performance photodetector [J]. Results in Physics, 2020, 17103087

[68]

WeiX-H, WangS-T, WangC, et al.. Electronic structures and nanofilm growth of 2, 7-dioctyl[1]benzothieno [3, 2-b]benzothiophene on black phosphorus [J]. Journal of Nanoscience and Nanotechnology, 2018, 18(6): 4332-4336

[69]

ZhaoY, LiuX-L, FengG-D, et al.. Modification of C60 nano-interlayers on organic field-effect transistors based on 2, 7-diocty[1]benzothieno- [3, 2-b] benzothiophene (C8-BTBT)/SiO2 [J]. Results in Physics, 2020, 19103590

[70]

ZhaoY, LiuX-L, LiL, et al.. Modification of an ultrathin C60 interlayer on the electronic structure and molecular packing of C8-BTBT on HOPG [J]. Physical Chemistry Chemical Physics: PCCP, 2020, 22(43): 25264-25271

[71]

KimD Y, SubbiahJ, SarasquetaG, et al.. The effect of molybdenum oxide interlayer on organic photovoltaic cells [J]. Applied Physics Letters, 2009, 959093304

[72]

AblatA, KyndiahA, HouinG, et al.. Role of oxide/metal bilayer electrodes in solution processed organic field effect transistors[J]. Scientific Reports, 2019, 96685

[73]

LyuL, NiuD-M, XieH-P, et al.. Orientation-dependent energy level alignment and film growth of 2, 7-diocty[1]benzothieno[3, 2-b]benzothiophene (C8-BTBT) on HOPG [J]. The Journal of Chemical Physics, 2016, 1443034701

AI Summary AI Mindmap
PDF

216

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/