Evaluation of time-dependent rheological properties of cemented paste backfill incorporating superplasticizer with special focus on thixotropy and static yield stress

Xiao-lin Wang , Hong-jiang Wang , Ai-xiang Wu , Hai-qiang Jiang , Qing-song Peng , Xi Zhang

Journal of Central South University ›› 2022, Vol. 29 ›› Issue (4) : 1239 -1249.

PDF
Journal of Central South University ›› 2022, Vol. 29 ›› Issue (4) : 1239 -1249. DOI: 10.1007/s11771-022-4993-x
Article

Evaluation of time-dependent rheological properties of cemented paste backfill incorporating superplasticizer with special focus on thixotropy and static yield stress

Author information +
History +
PDF

Abstract

Superplasticizers are widely used to reduce the pipe flow resistance of cemented paste backfill (CPB), which is characterised by high concentration and high yield stress. This study aimed to assess the time-dependent rheological properties of CPB containing superplasticizer, with special focus on static yield stress and thixotropy. The results indicate that with the increase of the superplasticizer dosage, the static yield stress, dynamic yield stress and thixotropy of CPB decreased significantly, while the plastic viscosity decreased slightly. The curing time has a significant effect on the static yield stress, dynamic yield stress and thixotropy of CPB containing superplasticizer, which increase by 46.6%–87.1%, 15.2%–35.6% and 79.4%–138.2%, respectively, within 2 h. The static yield stress, dynamic yield stress and thixotropy of CPB without superplasticizer only increase by 4.9%, 6.3% and 16.1%, respectively, within 2 h. The curing time has a significant influence on the plastic viscosity of CPB regardless of superplasticizer addition, the plastic viscosity increases by 13.2%–19.7% within 2 h. Regardless of superplasticizer dosage, plotting of both static yield stress and dynamic yield stress versus thixotropy produces clearly linear curves. The findings of this study are conducive to the design of pipe transportation of CPB containing superplasticizer.

Keywords

cemented paste backfill / superplasticizer / curing time / yield stress / thixotropy

Cite this article

Download citation ▾
Xiao-lin Wang, Hong-jiang Wang, Ai-xiang Wu, Hai-qiang Jiang, Qing-song Peng, Xi Zhang. Evaluation of time-dependent rheological properties of cemented paste backfill incorporating superplasticizer with special focus on thixotropy and static yield stress. Journal of Central South University, 2022, 29(4): 1239-1249 DOI:10.1007/s11771-022-4993-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WangK, YangP, HudsonedwardsK, et al.. Status and development for the prevention and management of tailings dam failure accidents [J]. Chinese Journal of Engineering, 2018, 40(5): 526-539

[2]

SheshpariM. A review of underground mine backfilling methods with emphasis on cemented paste backfill [J]. Electronic Journal of Geotechnical Engineering, 2015, 20: 5183-5208

[3]

QiC-C, FourieA. Cemented paste backfill for mineral tailings management: Review and future perspectives [J]. Minerals Engineering, 2019, 144: 106025

[4]

XuW-B, TianM-M, LiQ-L. Time-dependent rheological properties and mechanical performance of fresh cemented tailings backfill containing flocculants [J]. Minerals Engineering, 2020, 145106064

[5]

DengX-J, KleinB, TongL-B, et al.. Experimental study on the rheological behavior of ultra-fine cemented backfill [J]. Construction and Building Materials, 2018, 158985-994

[6]

JiangH-Q, FallM, YilmazE, et al.. Effect of mineral admixtures on flow properties of fresh cemented paste backfill: Assessment of time dependency and thixotropy [J]. Powder Technology, 2020, 372: 258-266

[7]

WuA-X, RuanZ, ShaoY-J, et al.Friction losses of cemented unclassified iron tailings slurry based on full-scale pipe-loop test [C], 2019, Perth, Australian Centre for Geomechanics

[8]

SivakuganN, VeenstraR, NaguleswaranN. Underground mine backfilling in Australia using paste fills and hydraulic fills [J]. International Journal of Geosynthetics and Ground Engineering, 2015, 1(2): 1-7

[9]

WuA-X, LiH, ChengH-Y, et al.. Status and prospects of researches on rheology of paste backfill using unclassified-tailings (Part 1): Concepts, characteristics and models [J]. Chinese Journal of Engineering, 2020, 42(7): 803-813(in Chinese)

[10]

WuA-X, JiaoH, WangH-J, et al.Status and development trends of paste disposal technology with ultrafine unclassified tailings in China [C], 2011, Perth, Australian Centre for Geomechanics

[11]

YinS-H, ShaoY-J, WuA-X, et al.. A systematic review of paste technology in metal mines for cleaner production in China [J]. Journal of Cleaner Production, 2020, 247: 119590

[12]

QiC-C, ChenQ-S, FourieA, et al.. Pressure drop in pipe flow of cemented paste backfill: Experimental and modeling study [J]. Powder Technology, 2018, 3339-18

[13]

BharathanB, McguinnessM, KuharS, et al.. Pressure loss and friction factor in non-Newtonian mine paste backfill: Modelling, loop test and mine field data [J]. Powder Technology, 2019, 344: 443-453

[14]

ChenQ-S, ZhangQ-L, WangX-M, et al.. A hydraulic gradient model of paste-like crude tailings backfill slurry transported by a pipeline system [J]. Environmental Earth Sciences, 2016, 75(14): 1-9

[15]

GaoR-G, ZhouK-P, ZhouY-L, et al.. Research on the fluid characteristics of cemented backfill pipeline transportation of mineral processing tailings [J]. Alexandria Engineering Journal, 2020, 59(6): 4409-4426

[16]

LiX-B, LiuB, YaoJ-R, et al.. Theory and practice of green mine backfill with whole phosphate waste [J]. The Chinese Journal of Nonferrous Metals, 2018, 28(9): 1845-1865

[17]

YáñezR R, TapiaCTailings transport on high yield stress requirements: Turbulent or laminar flow? [C], 2018, Perth, Australian Centre for Geomechanics

[18]

BogerD V. Rheology of slurries and environmental impacts in the mining industry [J]. Annual Review of Chemical and Biomolecular Engineering, 2013, 4: 239-257

[19]

BogerD V. Rheology and the resource industries [J]. Chemical Engineering Science, 2009, 64(22): 4525-4536

[20]

EshtiaghiN, MarkisF, YapS D, et al.. Rheological characterisation of municipal sludge: A review [J]. Water Research, 2013, 47(15): 5493-5510

[21]

PullumL, BogerD V, SofraF. Hydraulic mineral waste transport and storage [J]. Annual Review of Fluid Mechanics, 2018, 50: 157-185

[22]

PULLUM L. Pipelining tailings, pastes and backfill [C]//Proceedings of the 10th International Seminar on Paste and Thickened Tailings. 2007: 113–129. https://papers.acg.uwa.edu.au/p/702_12_Pullum/.

[23]

QianY, KawashimaS. Distinguishing dynamic and static yield stress of fresh cement mortars through thixotropy [J]. Cement and Concrete Composites, 2018, 86: 288-296

[24]

PanchalS, DebD, SreenivasT. Variability in rheology of cemented paste backfill with hydration age, binder and superplasticizer dosages [J]. Advanced Powder Technology, 2018, 29(9): 2211-2220

[25]

CreberK J, McguinnessM, KermaniM F, et al.. Investigation into changes in pastefill properties during pipeline transport [J]. International Journal of Mineral Processing, 2017, 163: 35-44

[26]

NemotoH, DateS, HashimotoS. Discussion of mix proportions of concrete for long-distance pumping [J]. Key Engineering Materials, 2017, 744: 32-39

[27]

GaonaS A, RibeiroV P, SantiagoR S. Startup flow of elasto-viscoplastic thixotropic materials in pipes [J]. Journal of Petroleum Science and Engineering, 2016, 147: 427-434

[28]

LiZ-G, CaoG-D, GuoK. Numerical method for thixotropic behavior of fresh concrete [J]. Construction and Building Materials, 2018, 187: 931-941

[29]

WuA-X, ChengH-Y, YangYThixotropic behavior of paste [C], 2017, Beijing, University of Science and Technology Beijing

[30]

MewisJ, WagnerN J. Thixotropy [J]. Advances in Colloid and Interface Science, 2009, 147–148: 214-227

[31]

EmadM Z, MitriH, KellyC. State-of-the-art review of backfill practices for sublevel stoping system [J]. International Journal of Mining, Reclamation and Environment, 2015, 29(6): 544-556

[32]

ManganeM B C, ArganeR, TrauchessecR, et al.. Influence of superplasticizers on mechanical properties and workability of cemented paste backfill [J]. Minerals Engineering, 2018, 116: 3-14

[33]

YangL, YilmazE, LiJ-W, et al.. Effect of superplasticizer type and dosage on fluidity and strength behavior of cemented tailings backfill with different solid contents [J]. Construction and Building Materials, 2018, 187: 290-298

[34]

OuattaraD, MbonimpaM, YahiaA, et al.. Assessment of rheological parameters of high density cemented paste backfill mixtures incorporating superplasticizers [J]. Construction and Building Materials, 2018, 190: 294-307

[35]

LiuY, LiH, WangK, et al.. Effects of accelerator-water reducer admixture on performance of cemented paste backfill [J]. Construction and Building Materials, 2020, 242: 118187

[36]

CavusogluI, YilmazE, YilmazA O. Additivity effect on properties of cemented coal fly ash backfill containing water-reducing admixtures [J]. Construction and Building Materials, 2021, 267121021

[37]

HarunaS, FallM. Time- and temperature-dependent rheological properties of cemented paste backfill that contains superplasticizer [J]. Powder Technology, 2020, 360731-740

[38]

DuJ-F, HouC, ZhuZ-W, LiuH-L, LiuX-G. Flocculating sedimentation test of unclassified tailings and its engineering application [J]. Metal Mine, 2020, 523: 95-100(in Chinese)

[39]

MizaniS, SimmsP. Method-dependent variation of yield stress in a thickened gold tailings explained using a structure based viscosity model [J]. Minerals Engineering, 2016, 98: 40-48

[40]

BalaM, ZentarR, BoustingorryP. Comparative study of the yield stress determination of cement pastes by different methods [J]. Materials and Structures, 2019, 52(5): 102

[41]

BauerE, De SousaJ G G, GuimarãesE A, et al.. Study of the laboratory Vane test on mortars [J]. Building and Environment, 2007, 42186-92

[42]

de MatosP R, PilarR, CasagrandeC A, et al.. Comparison between methods for determining the yield stress of cement pastes [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 42(1): 1-13

[43]

ShuiL-L, SunZ-P, YangH-J, et al.. Experimental evidence for a possible dispersion mechanism of polycarboxylate-type superplasticisers [J]. Advances in Cement Research, 2016, 28(5): 287-297

[44]

LeonavičiusD, PundienėI, PranckevičienėJ, et al.. Selection of superplasticisers for improving the rheological and mechanical properties of cement paste with CNTs [J]. Construction and Building Materials, 2020, 253: 119182

[45]

MengY-Y, LiaoB, WangK, et al.. Effects of cyclodextrin-modified polycarboxylate superplasticizers on the dispersion and hydration properties of cement paste [J]. Journal of Macromolecular Science: Part A, 2019, 56(10): 933-942

[46]

OfwaT O, KotengD O, MweroJ N. Evaluating superplasticizer compatibility in the production of high performance concrete using Portland pozzolana cement CEM II/B-P [J]. International Journal of Civil Engineering, 2020, 7(6): 92-100

[47]

AdjoudjM, EzzianeK, KadriE H, et al.. Evaluation of rheological parameters of mortar containing various amounts of mineral addition with polycarboxylate superplasticizer [J]. Construction and Building Materials, 2014, 70549-559

[48]

RousselN. Steady and transient flow behaviour of fresh cement pastes [J]. Cement and Concrete Research, 2005, 35(9): 1656-1664

[49]

WangQ, CuiX-Y, WangJ, et al.. Effect of fly ash on rheological properties of graphene oxide cement paste [J]. Construction and Building Materials, 2017, 138: 35-44

[50]

LimG G, HongS S, KimD S, et al.. Slump loss control of cement paste by adding polycarboxylic type slump-releasing dispersant [J]. Cement and Concrete Research, 1999, 29(2): 223-229

[51]

ZhaoH, SunW, WuX-M, et al.. Influence of addition of polycarboxylate-based superplasticizer on properties of high performance concrete [J]. Journal of Materials in Civil Engineering, 2020, 32(3): 04020009

[52]

SilvaB, FerreiraP A P, GomesA, et al.. Fresh and hardened state behaviour of aerial lime mortars with superplasticizer [J]. Construction and Building Materials, 2019, 225: 1127-1139

[53]

CollepardiM. Admixtures used to enhance placing characteristics of concrete [J]. Cement and Concrete Composites, 1998, 20(23): 103-112

[54]

ChandraS, BjörnströmJ. Influence of superplasticizer type and dosage on the slump loss of Portland cement mortars—Part II [J]. Cement and Concrete Research, 2002, 32(10): 1613-1619

[55]

WangY, FallM, WuA-X. Initial temperature-dependence of strength development and self-desiccation in cemented paste backfill that contains sodium silicate [J]. Cement and Concrete Composites, 2016, 67101-110

[56]

LiZ-K, PengJ-H. Influence of polycarboxylate superplasticizer on cement hydration products [J]. Applied Mechanics and Materials, 2014, 638–640: 1354-1359

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/