Heat transfer analysis and experimental study of unequal diameter twin-roll casting process for fabricating Cu/Al clad strips

Hua-gui Huang , Jun-peng Zhang , Ce Ji

Journal of Central South University ›› 2022, Vol. 29 ›› Issue (4) : 1133 -1146.

PDF
Journal of Central South University ›› 2022, Vol. 29 ›› Issue (4) : 1133 -1146. DOI: 10.1007/s11771-022-4990-0
Article

Heat transfer analysis and experimental study of unequal diameter twin-roll casting process for fabricating Cu/Al clad strips

Author information +
History +
PDF

Abstract

Unequal diameter twin-roll casting (UDTRC) can improve the formability, surface conditions, and production efficiency during the fabrication of clad strips. Using Fluent software, a numerical simulation is used to study the asymmetric heat transfer characteristics of Cu/Al clad strips fabricated by UDTRC. The effects of roller velocity ratio, Cu strip thickness, and inclination angle on the kissing point position, as well as the entire temperature distribution are obtained. The heat transfer model is established, and the mechanism is discussed. The Cu strip and rollers are found to be the main causes of asymmetric heat transfer, indicating that the roller velocity ratio changes the liquid zone proportion in the molten pool. The Cu strip thickness determines the heat absorption capacity and the variations in thermal resistance between the molten Al and the big roller. The inclination angle of the small roller changes the cooling time of big roller to molten Al. Moreover, the microstructure of Al cladding under different roller velocity ratios is examined. The results show significant grain refinement caused by the shear strain along the thickness direction of Al cladding and the intense heat transfer at the moment of contact between the metal Al cladding and Cu strip.

Keywords

unequal diameter twin-roll casting / Cu/Al clad strips / asymmetric heat transfer / thermal-fluid coupled / microstructure

Cite this article

Download citation ▾
Hua-gui Huang, Jun-peng Zhang, Ce Ji. Heat transfer analysis and experimental study of unequal diameter twin-roll casting process for fabricating Cu/Al clad strips. Journal of Central South University, 2022, 29(4): 1133-1146 DOI:10.1007/s11771-022-4990-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KumaiS, TakayamaY, NakamuraR, et al.. Application of vertical-type high-speed twin-roll casting for up-grade recycling and clad sheets fabrication of aluminum alloys [J]. Materials Science Forum, 2016, 877: 56-61

[2]

ChenG, LiJ-T, XuG-M. Bonding process and interfacial reaction in horizontal twin-roll casting of steel/aluminum clad sheet [J]. Journal of Materials Processing Technology, 2017, 246: 1-12

[3]

JiC, HuangH-G. A review of the twin-roll casting process for complex section products [J]. ISIJ International, 2020, 60(10): 2165-2175

[4]

LeeD H, KimJ S, SongH, et al.. Tensile property improvement in Ti/Al clad sheets fabricated by twin-roll casting and annealing [J]. Metals and Materials International, 2017, 23(4): 805-812

[5]

HuangH G, ChenP, JiC. Solid-liquid cast-rolling bonding (SLCRB) and annealing of Ti/Al cladding strip [J]. Materials & Design, 2017, 118: 233-244

[6]

HuangH-G, DongY-K, YanM, et al.. Evolution of bonding interface in solid-liquid cast-rolling bonding of Cu/Al clad strip [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(5): 1019-1025

[7]

LiuG-P, WangQ-D, ZhangL, et al.. Effect of cooling rate on the microstructure and mechanical properties of Cu/Al bimetal fabricated by compound casting [J]. Metallurgical and Materials Transactions A, 2018, 49(2): 661-672

[8]

LiX-B, ZuG-Y, WangP. Interface strengthening of laminated composite produced by asymmetrical roll bonding [J]. Materials Science and Engineering A, 2013, 562: 96-100

[9]

ZhangJ-Y, YaoJ-J, ZengX-Y, et al.. Research progress of copper cladding aluminum composites [J]. The Chinese Journal of Nonferrous Metals, 2014, 24(5): 1275-1284(in Chinese)

[10]

WangD, ZhouC. A top side-pouring twin-roll caster for metals strips [J]. Journal of Materials Processing Technology, 2014, 214(4): 916-924

[11]

NakamuraR, AsaiT, WatariH, et al.. Casting of aluminum alloy bar by semisolid roll casting [J]. Solid State Phenomena, 2008, 141–143: 295-300

[12]

HagaT, InuiH, WatariH, et al.. Casting of Al-Si hypereutectic aluminum alloy strip using an unequal diameter twin roll caster [J]. Journal of Materials Processing Technology, 2007, 191(1–3): 238-241

[13]

WangD, ZhouC, XuG-J, et al.. Heat transfer behavior of top side-pouring twin-roll casting [J]. Journal of Materials Processing Technology, 2014, 214(6): 1275-1284

[14]

HuangH-G, JiC, DongY-K, et al.. Thermal-flow coupled numerical simulation and experimental research on bonding mechanism of Cu/Al composite strip by solid-liquid cast-rolling [J]. The Chinese Journal of Nonferrous Metals, 2016, 26(3): 623-629(in Chinese)

[15]

JiC, HuangH-G, ZhangJ-P, et al.. Influence of the substrate strip on the asymmetric heat transfer of twin-roll casting for fabricating bimetallic clad strips [J]. Applied Thermal Engineering, 2019, 158: 113818

[16]

ParkS S, BaeG T, KangD H, et al.. Microstructure and tensile properties of twin-roll cast Mg-Zn-Mn-Al alloys [J]. Scripta Materialia, 2007, 57(9): 793-796

[17]

JiC, HuangH-G, ZhangX, et al.. Numerical and experimental research on fluid flow, solidification, and bonding strength during the twin-roll casting of Cu/invar/Cu clad strips [J]. Metallurgical and Materials Transactions B, 2020, 51(4): 1617-1631

[18]

StolbchenkoM, GrydinO, SamsonenkoA, et al.. Numerical analysis of the twin-roll casting of thin aluminium-steel clad strips [J]. Forschung Im Ingenieurwesen, 2014, 78(34): 121-130

[19]

LeeY S, KimH W, ChoJ H. Process parameters and roll separation force in horizontal twin roll casting of aluminum alloys [J]. Journal of Materials Processing Technology, 2015, 21848-56

[20]

ZhaoH, HeL-J, LiP-J. Microstructure of asymmetric twin-roll cast AZ31 magnesium alloy [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(11): 2372-2377

[21]

GrydinO, StolbchenkoM, BauerM, et al.. Asymmetric twin-roll casting of an Al-Mg-Si-alloy [J]. Materials Science Forum, 2018, 918: 48-53

[22]

ParkJ J. Numerical analyses of cladding processes by twin-roll casting: Mg-AZ31 with aluminum alloys [J]. International Journal of Heat and Mass Transfer, 2016, 93: 491-499

[23]

VollerV R, PrakashC. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems [J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719

[24]

ParkJ J. Finite-element analysis of severe plastic deformation in differential-speed rolling [J]. Computational Materials Science, 2015, 100: 61-66

[25]

WangZ J, ZhaiL, MaM, et al.. Microstructure, texture and mechanical properties of Al/Al laminated composites fabricated by hot rolling [J]. Materials Science and Engineering A, 2015, 644: 194-203

[26]

ZhangJ-P, HuangH-G, ZhaoR-D, et al.. Cast-rolling force model in solid-liquid cast-rolling bonding (SLCRB) process for fabricating bimetal clad strips [J]. Transactions of Nonferrous Metals Society of China, 2021, 31(3): 626-635

[27]

BeausirB, BiswasS, KimD I, et al.. Analysis of microstructure and texture evolution in pure magnesium during symmetric and asymmetric rolling [J]. Acta Materialia, 2009, 57(17): 5061-5077

[28]

LiuR-F, WangW-X, ChenH-S. Synthesis of nano- to micrometer-sized B4C particle-reinforced aluminum matrix composites via powder metallurgy and subsequent heat treatment [J]. Journal of Central South University, 2021, 28(8): 2295-2306

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/