Impact of ultrasonic power on liquid fraction, microstructure and physical characteristics of A356 alloy molded through cooling slope
Pabak Mohapatra , Nirmal Kumar Kund
Journal of Central South University ›› 2022, Vol. 29 ›› Issue (4) : 1098 -1106.
Impact of ultrasonic power on liquid fraction, microstructure and physical characteristics of A356 alloy molded through cooling slope
This study involves A356 alloy molded through ultrasonically vibrated cooling slope. The slope alongside ultrasonic power enables indispensable shear for engendering slurry from which the semisolid cast/heat treated billets got produced. An examination demonstrates ultrasonically vibrated cooling slope influencing the liquid fraction/microstructure/physical characteristics of stated billets. The investigation encompasses five diverse ultrasonic powers (0, 75, 150, 200, 250 W). The ultrasonic power of 150 W delivers finest/rounded microstructure with enhanced physical characteristics. Microstructural modifications reason physical transformations because of grain refinement and grain-boundary/Hall-Petch strengthening. A smaller grain size reasons a higher strength/shape factor and an increased homogeneity reasons a higher ductility. Microstructural characteristics get improved by reheating. It is owing to coalescence throughout temperature homogenization. The physical characteristics is improved by reheating because of a reduced porosity and enhanced dissolution besides augmented homogeneity. A direct comparison remains impossible owing to unavailability of researches on ultrasonically vibrated cooling slope.
ultrasonic power / microstructure / physical characteristics / semisolid cast / A356 alloy / cooling slope
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
/
| 〈 |
|
〉 |