High quality-performance by changing parameters of antenna array

Xue-mei Xu , Jun Wen , Wei Cheng , Ke-hui Sun , Yi-peng Sun , Zhao-hui Jiang

Journal of Central South University ›› 2022, Vol. 29 ›› Issue (1) : 146 -156.

PDF
Journal of Central South University ›› 2022, Vol. 29 ›› Issue (1) : 146 -156. DOI: 10.1007/s11771-022-4921-0
Article

High quality-performance by changing parameters of antenna array

Author information +
History +
PDF

Abstract

Several antennas based on cylindrical array and uniform hexagonal array are designed and fabricated on flexible substrate-Teflon. To validate the designed prototypes, the antennas are fabricated and their performance is analyzed. The highlight scheme is to improve the signal performance and electromagnetic field distribution by appropriately changing the parameters of the antennas array, signal frequencies, and steering angles. The proposed antennas array is capable of applying shaping radiation band technique to generate tunable power and radiation domain. The distribution of the field, and the bit-error-rate transmigration coefficient characteristics are measured. The results show that the proposed scheme can achieve better performance by searching the optimal parameters of antenna array.

Keywords

array antenna structure / bit-error-rate / electromagnetic beam / antenna parameters / high speed frequencies

Cite this article

Download citation ▾
Xue-mei Xu, Jun Wen, Wei Cheng, Ke-hui Sun, Yi-peng Sun, Zhao-hui Jiang. High quality-performance by changing parameters of antenna array. Journal of Central South University, 2022, 29(1): 146-156 DOI:10.1007/s11771-022-4921-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SunX, LuB-Y, JinT, et al.. Antenna planes based wall-clutter mitigation in through-wall-imaging applications [J]. Journal of Central South University, 2016, 23(10): 2638-2646

[2]

AkaoT, WatanabeK, KojimaS, et al.. Reducing channel spatial correlation by rotating planar antenna array [J]. ICT Express, 2019, 5(4): 271-275

[3]

AbdulkarimY I, DengL-W, AwlH N, et al.. Design of a broadband coplanar waveguide-fed antenna incorporating organic solar cells with 100% insolation for Ku band satellite communication [J]. Materials, 2019, 13(1): 142-153

[4]

GuoC-B, DengL-W, DongJ, et al.. Variode enabled frequency-reconfigurable microstrip patch antenna with operation band covering S and C bands [J]. Progress in Electromagnetics Research M, 2020, 88: 159-167

[5]

WangH-Y, DengL-W, LuoH, et al.. Microwave wireless power transfer system based on a frequency reconfigurable microstrip patch antenna array [J]. Energies, 2021, 14(2): 415-427

[6]

AwlH N, AbdulkarimY I, DengL-W, et al.. Bandwidth improvement in bow-Tie microstrip antennas: The effect of substrate type and design dimensions [J]. Applied Sciences, 2020, 10(2): 504-518

[7]

JosephS D, ManojS, WaghmareC, et al.. UWB sensing antenna, reconfigurable transceiver and reconfigurable antenna based cognitive radio test bed [J]. Wireless Personal Communications, 2017, 96(3): 3435-3462

[8]

ZhaoA-P, RenZ-Y. Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(1): 152-156

[9]

AkaoT, WatanabeK, KojimaS, et al.. Reducing channel spatial correlation by rotating planar antenna array [J]. ICT Express, 2019, 5(4): 271-275

[10]

RahmanN, AfsarM N. A novel modified Archimedean polygonal spiral antenna [J]. IEEE Transactions on Antennas and Propagation, 2013, 61(1): 54-61

[11]

Alex-AmorA, Palomares-CaballeroÁ, Fernández-GonzálezJ M, et al.. RF energy harvesting system based on an Archimedean spiral antenna for low-power sensor applications [J]. Sensors (Basel, Switzerland), 2019, 19(6): E1318

[12]

MohamadS, CahillR, FuscoV. Performance of Archimedean spiral antenna backed by FSS reflector [J]. Electronics Letters, 2015, 51114-16

[13]

FangH R, SerhirM, GuinvarchR, et al.. Enhanced dual-circular polarised four-arm Archimedean spiral antenna with low-profile cavity backing [J]. IET Microwaves, Antennas & Propagation, 2015, 9(12): 1260-1266

[14]

MadhavB T P, AnilkumarT, KotamrajuS K. Transparent and conformal wheel-shaped fractal antenna for vehicular communication applications [J]. AEU-International Journal of Electronics and Communications, 2018, 91: 1-10

[15]

BalaramiR B N, SandeepK P, RamaR T, et al.. Design and analysis of wideband monopole antennas for flexible/wearable wireless device applications [J]. Progress in Electromagnetics Research M, 2017, 62: 167-174

[16]

SallamM O, KandilS M, VolskiV, et al.. Wideband CPW-fed flexible bow-Tie slot antenna for WLAN/WiMax systems [J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 4274-4277

[17]

ZANGENEH H R, MORADIANNEJAD F. Confifinement of generated terahertz waves temperature GaAs antenna array terahertz emitters [J]. Appl Phys Lett, 2007(1): 463–469. DOI: https://doi.org/10.1007/s10825-017-1111-7.

[18]

PanM-H, TangW-C, XingY, et al.. Numerical simulation analysis for deformation deviation and experimental verification for an antenna thin-wall parts considering riveting assembly with finite element method [J]. Journal of Central South University, 2018, 25(1): 60-77

[19]

ParkM H, ChoiY S. Performance analysis of degradation detection method on millimeter wave channel [C]. 2015 International Conference on Information and Communication Technology Convergence (ICTC), 2015, Jeju, Korea, IEEE, 971973

[20]

BangerterB, TalwarS, ArefiR, et al.. Networks and devices for the 5G era [J]. IEEE Communications Magazine, 2014, 52(2): 90-96

AI Summary AI Mindmap
PDF

84

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/