Effect of activator on rheological properties of alkali-activated slag-fly ash pastes

Qiang Yuan , Yan-ling Huang , Ting-jie Huang , Hao Yao , Qi-hong Wu

Journal of Central South University ›› 2022, Vol. 29 ›› Issue (1) : 282 -295.

PDF
Journal of Central South University ›› 2022, Vol. 29 ›› Issue (1) : 282 -295. DOI: 10.1007/s11771-022-4913-0
Article

Effect of activator on rheological properties of alkali-activated slag-fly ash pastes

Author information +
History +
PDF

Abstract

The time-dependent rheological behaviors of alkali-activated cement (AAC) are expected to be precisely controlled, in order to meet the requirements of modern engineering practices. In this paper, the effects of activator, including the Na2O concentration and SiO2/Na2O (S/N) molar ratio, on the rheological behavior of alkali-activated slag-fly ash pastes were investigated. The small amplitude oscillatory shear (SAOS) and shear test were used to evaluate the structural build-up and flowability of pastes. Besides, zeta potential measurement, calorimetric test and thermogravimetric analysis (TGA) were carried out to reveal the physico-chemical mechanisms behind the rheological evolution of fresh pastes. It was found that high Na2O concentration and low S/N molar ratio improved the flowability and structural build-up rate of paste. Moreover, the structural build-up of alkali-activated slag-fly ash pastes consists of two stages, which is controlled by the dissolution of solid reactants and formation of C-(A)-S-H gels, respectively.

Keywords

alkali-activated slag-fly ash / activator / zeta potential / rheology / structural build-up

Cite this article

Download citation ▾
Qiang Yuan, Yan-ling Huang, Ting-jie Huang, Hao Yao, Qi-hong Wu. Effect of activator on rheological properties of alkali-activated slag-fly ash pastes. Journal of Central South University, 2022, 29(1): 282-295 DOI:10.1007/s11771-022-4913-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DamtoftJ S, LukasikJ, HerfortD, et al.. Sustainable development and climate change initiatives [J]. Cement & Concrete Research, 2008, 38(2): 115-127

[2]

SchneiderM, RomerM, TschudinM, et al.. Sustainable cement production—Present and future [J]. Cement & Concrete Research, 2011, 41(7): 642-650

[3]

ShiC-J, Fernández-JiménezA, PalomoA. New cements for the 21st century: The pursuit of an alternative to Portland cement [J]. Cement & Concrete Research, 2011, 41(7): 750-763

[4]

VoitK, BergmeisterK, JanotkaI. Reducing CO2-emission by using eco-cements [J]. Egu General Assembly, 2012, 14: 2231-2239

[5]

AtisC D, BilimC, ÇelikÖ, et al.. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar [J]. Construction & Building Materials, 2009, 23(1): 548-555

[6]

NajafiK E, AllahverdiA, ProvisJ L. Efflorescence control in geopolymer binder based on natural pozzolan [J]. Cement & Concrete Composites, 2012, 34(1): 25-33

[7]

HE Rui, DAI Nan, WANG Zhen-jun. Thermal and mechanical properties of geopolymers exposed to high temperature: A literature review [J]. Advances in Civil Engineering, 2020(3): 1–17. DOI: https://doi.org/10.1155/2020/7532703.

[8]

PalaciosM, PuertasF. Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mortars [J]. Cement & Concrete Research, 2005, 35(7): 1358-1367

[9]

DuxsonP, Fernández-JiménezA, ProvisJ L, et al.. Geopolymer technology: The current state of the art [J]. Journal of Materials Science, 2007, 42(9): 2917-2933

[10]

ZhangY-M, BaoS-X, LiuT, et al.. The technology of extracting vanadium from stone coal in China: History, current status and future prospects [J]. Hydrometall, 2011, 109(1): 116-124

[11]

JiaoX-K, ZhangY-M, ChenT-J. Thermal stability of a silica-rich vanadium tailing based geopolymer [J]. Construction & Building Materials, 2013, 38: 43-47

[12]

ReigL, TashimaM M, SorianoL, et al.. Alkaline activation of ceramic waste materials [J]. Waste & Biomass Valoriz, 2013, 4(4): 729-736

[13]

PuertaF, Torres-CarrascoM. Use of glass waste as an activator in the preparation of alkali-activated slag, mechanical strength and paste characterization [J]. Cement & Concrete Research, 2014, 57: 95-104

[14]

NIE Qing-ke, HU Wei, HUANG Bao-shan, et al. Synergistic utilization of red mud for flue-gas desulfurization and fly ash-based geopolymer preparation [J]. Journal of Hazardous Materials, 2019(369): 503–511. DOI: https://doi.org/10.1016/j.jhazmat.2019.02.059.

[15]

PalomoA, Fernández-JiménezA, López-HombradosC, et al.. Railway sleepers made of alkali activated fly ash concrete [J]. Revista Ingeniería De Construcción, 2007, 22(2): 75-80

[16]

BuchwaldA, VanooteghemM, GruyaertE, et al.. Purdocement: Application of alkali-activated slag cement in Belgium in the 1950s [J]. Materials & Structures, 2015, 48(1): 501-511

[17]

IsmailI, BernalS A, ProviJ L, et al.. Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash [J]. Cement & Concrete Composites, 2014, 45: 125-135

[18]

LeeN K, LeeH K, JangJ G. Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages [J]. Cement & Concrete Composites, 2014, 53: 239-248

[19]

NathP, SarkerP K. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition [J]. Construction & Building Materials, 2014, 66: 163-171

[20]

GaoX, YuQ-L, BrouwersH J H. Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model [J]. Construction & Building Materials, 2016, 119: 175-184

[21]

LeeN K, LeeH K. Influence of the slag content on the chloride and sulfuric acid resistances of alkali-activated fly ash/slag paste [J]. Cement & Concrete Composites, 2016, 72: 168-179

[22]

BanfillP F G, SaundersD C. On the viscometric examination of cement pastes [J]. Cement & Concrete Research, 1981, 11(3): 363-370

[23]

MehdizadehH, NajafiK E. Rheology and apparent activation energy of alkali activated phosphorous slag [J]. Construction & Building Materials, 2018, 171: 197-204

[24]

PalaciosM, BanfillP F G, PuertasF. Rheology and setting behavior of alkaliactivated slag pastes and mortars: Effect if organic admixture [J]. ACI Materials Journal, 2008, 105(2): 140-148

[25]

PoulesquenA, FrizonF, LambertinD. Rheological behavior of alkali-activated metakaolin during geopolymerization [J]. Journal of Non-Crystalline Solids, 2011, 357(21): 3565-3571

[26]

PuertasF, VargaC, AlonsoM M. Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution [J]. Cement & Concrete Composites, 2014, 53: 279-288

[27]

MartinV, RovnaníkováP, MartinK. Rheological properties of alkali-activated brick powder based pastes: Effect of alkali activator and silicate modulus [J]. Solid State Phenomena, 2018, 276: 185-191

[28]

PalaciosM, AlonsoM M, VargaC, et al.. Influence of the alkaline solution and temperature on the rheology and reactivity of alkali-activated fly ash pastes [J]. Cement & Concrete Composites, 2019, 95: 277-284

[29]

ALGHAMDI H, NAIR S A O, NEITHALATH N. Insights into material design, extrusion rheology, and properties of 3D-printable alkali-activated fly ash-based binders [J]. Materials & Design, 2019(167): 107634. DOI: https://doi.org/10.1016/j.matdes.2019.107634.

[30]

KashaniA, ProvisJ L, QiaoG G, et al.. The interrelationship between surface chemistry and rheology in alkali activated slag paste [J]. Construction & Building Materials, 2014, 65: 583-591

[31]

ZhangT, ZhangD-W, WangD-M, et al.. The study of the structure rebuilding and yield stress of 3D printing geopolymer pastes [J]. Construction & Building Materials, 2014, 184: 575-580

[32]

AsproneD, MennaC, BosF P, et al.. Rethinking reinforcement for digital fabrication with concrete [J]. Cement & Concrete Research, 2018, 112: 111-121

[33]

MarchonD, KawashimaS, Bessaies-BeyH, et al.. Hydration and rheology control of concrete for digital fabrication: Potential admixtures and cement chemistry [J]. Cement & Concrete Research, 2018, 112: 96-110

[34]

ReiterL, WanglerT, RousselN, et al.. The role of early age structural build-up in digital fabrication with concrete [J]. Cement & Concrete Research, 2018, 112: 86-95

[35]

HUANG Ting-jie, LI Bai-yun, YUAN Qiang, et al. Rheological behavior of Portland clinker-calcium sulphoaluminate clinker-anhydrite ternary blend [J]. Cement & Concrete Composites, 2019(104): 103403. DOI: https://doi.org/10.1016/j.cemconcomp.2019.103403.

[36]

YuanQ, ZhouD-J, KhayatK H, et al.. On the measurement of evolution of structural build-up of cement paste with time by static yield stress test vs. small amplitude oscillatory shear test [J]. Cement & Concrete Research, 2017, 99: 183-189

[37]

RousselN. A thixotropy model for fresh fluid concretes: Theory, validation and applications [J]. Cement & Concrete Research, 2006, 36(10): 1797-1806

[38]

HuX, ShuC-J, YuanQ, et al.. Influences of chloride immersion on zeta potential and chloride concentration index of cement-based materials [J]. Cement & Concrete Research, 2018, 106: 49-56

[39]

PalaciosM, BanfillP F G, PuertasF. Rheology and setting of alkali-activated slag pastes and mortars: Effect of organic admixture [J]. ACI Materials Journal, 2008, 105(2): 140-148

[40]

LarrardF D, FerrarisC F, SedranT. Fresh concrete: A herschel-bulkley material [J]. Materials & Structures, 1998, 31(7): 494-498

[41]

ROMAGNOLI M, LEONELLI C, KAMSE E, et al. Rheology of geopolymer by DOE approach [J]. Construction & Building Materials, 2012(36): 251–258. DOI: https://doi.org/10.1016/j.conbuildmat.2012.04.122.

[42]

ShiC-J, DayR L. A calorimetric study of early hydration of alkali–slag cements [J]. Cement & Concrete Research, 1995, 25(6): 1333-1346

[43]

KanezakiE. Thermal behavior of the hydrotalcite-like layered structure of Mg and Al-layered double hydroxides with interlayer carbonate by means of in situpowder HTXRD and DTA/TG [J]. Solid State Ionics Diffusion & Reactions, 1998, 106(3): 279-284

[44]

RozovK, BernerU, Taviot-GuehoC, et al.. Synthesis and characterization of the LDH hydrotalcite — pyroaurite solid-solution series [J]. Cement & Concrete Research, 2010, 40(8): 1248-1254

[45]

PierreA, LanosC, EstelléP. Extension of spread-slump formulae for yield stress evaluation [J]. Applied Rheology, 2013, 23(6): 63849

[46]

BostromM, DenizV, FranksG V, et al.. Extended DLVO theory: Electrostatic and non-electrostatic forces in oxide suspensions [J]. Advances in Colloid and Interface Science, 2006, 123: 5-15

[47]

OtsukiA. Coupling colloidal forces with yield stress of charged inorganic particle suspension: A review [J]. Electrophoredis, 2018, 39690-701

[48]

JohnsonS B, FranksG V, ScalesP J, et al.. Surface chemistry–Rheology relationships in concentrated mineral suspensions [J]. International Journal of Mineral Processing, 2000, 58(1): 267-304

[49]

ROUSSEL N. Rheological requirements for printable concretes [J]. Cement & Concrete Research, 2018(112): 76–85. DOI: https://doi.org/10.1016/j.cemconres.2018.04.005.

[50]

JiaoD-W, ShiC-J, YuanQ, et al.. Effect of constituents on rheological properties of fresh concrete–A review [J]. Cement & Concrete Composites, 2017, 83: 146-159

[51]

YuanQ, LuX, KamalK H, et al.. Small amplitude oscillatory shear technique to evaluate structural build-up of cement paste[J]. Materials & Structures, 2017, 50(2): 1-12

[52]

YUAN Qiang, ZHOU Da-jun, LI Bai-yun, et al. Effect of mineral admixtures on the structural build-up of cement paste[J]. Construction & Building Materials, 2018(160): 117–126. DOI: https://doi.org/10.1016/j.conbuildmat.2017.11.050.

[53]

LiC, SunH-H, LiL-T. A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements [J]. Cement & Concrete Research, 2010, 40: 1341-1349

[54]

MeralC, BenmoreC J, MonteiroP J M. The study of disorder and nanocrystallinity in C-S-H, supplementary cementitious materials and geopolymers using pair distribution function analysis [J]. Cement & Concrete Research, 2011, 41: 696-710

[55]

YildizN, ErolM, BaranB, et al.. Modification of rheology and permeability of turkish ceramic clays using sodium silicate [J]. Applied Clay Science, 1998, 13: 65-77

[56]

RomagnoliM, AndreolaF. Mixture of deflocculants: A systematic approach [J]. Journal of the European Ceramic Society, 2007, 27: 1871-1874

[57]

FavierA, HabertG, D’Espinose de LacaillerieJ B, et al.. Mechanical properties and compositional heterogeneities of fresh geopolymer pastes [J]. Cement & Concrete Research, 2013, 48: 9-16

[58]

SahaS, RajasekaranC. Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag [J]. Construction & Building Materials, 2017, 146: 615-620

[59]

BroughA R, AtkinsonA. Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure [J]. Cement & Concrete Research, 2002, 32: 865-879

[60]

BernalS A, ProvisJ L, RoseV, et al.. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends [J]. Cement & Concrete Composites, 2011, 33: 46-51

[61]

PuertasF, Fernández-JiménezA. Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes [J]. Cement & Concrete Research, 2003, 25(3): 287-292

[62]

ProvisJ L. A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements [J]. Cement & Concrete Research, 2010, 40(12): 1766-1767

[63]

XuH, van DeventerJ S J, LukeyG C. Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures [J]. Industrial & Engineering Chemistry Research, 2001, 40(17): 3749-3756

[64]

DuxsonP, ProvisJ L. Designing precursors for geopolymer cements [J]. Journal of the American Ceramic Society, 2008, 91(12): 3864-3869

AI Summary AI Mindmap
PDF

239

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/