Highly soluble dendritic fullerene derivatives as electron transport material for perovskite solar cells

Zheng-chun Cheng , Yin-yu Fang , Ai-fei Wang , Tao-tao Ma , Fang Liu , Song Gao , Su-hao Yan , Yi Di , Tian-shi Qin

Journal of Central South University ›› 2022, Vol. 28 ›› Issue (12) : 3714 -3727.

PDF
Journal of Central South University ›› 2022, Vol. 28 ›› Issue (12) : 3714 -3727. DOI: 10.1007/s11771-021-4885-5
Article

Highly soluble dendritic fullerene derivatives as electron transport material for perovskite solar cells

Author information +
History +
PDF

Abstract

A series of shape-persistent polyphenylene dendritic C60 derivatives as the electron transport materials were designed and synthesized via a catalyst-free Diels-Alder [4+2] cycloaddition reaction. These increasing hyperbranched scaffolds could effectively enhance the solubility; notably, both first and second generation dendrimers, C60-G1 and C60-G2, demonstrated more than 5 times higher solubilities than pristine C60. Furthermore, both simulated and experimental data proved their promising solution-processabilities as electron-transporting layers (ETLs) for perovskite solar cells. As a result, the planar p-i-n structural perovskite solar cell could achieve a maximum power conversion efficiency of 14.7 % with C60-G2.

Keywords

dendritic structures / fullerene C60 / electron transport materials / enhanced solubility / perovskite solar cells

Cite this article

Download citation ▾
Zheng-chun Cheng, Yin-yu Fang, Ai-fei Wang, Tao-tao Ma, Fang Liu, Song Gao, Su-hao Yan, Yi Di, Tian-shi Qin. Highly soluble dendritic fullerene derivatives as electron transport material for perovskite solar cells. Journal of Central South University, 2022, 28(12): 3714-3727 DOI:10.1007/s11771-021-4885-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GaoP, GrätzelM, NazeeruddinM K. Organohalide lead perovskites for photovoltaic applications [J]. Energy Environ Sci, 2014, 7(8): 2448-2463

[2]

KimY H, ChoH, HeoJ H, KimT S, MyoungN, LeeC L, ImS H, LeeT W. Multicolored organic/inorganic hybrid perovskite light-emitting diodes [J]. Advanced Materials, 2015, 27(7): 1248-1254

[3]

StranksS D, EperonG E, GranciniG, MenelaouC, AlcocerM J, LeijtensT, HerzL M, PetrozzaA, SnaithH J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber [J]. Science, 2013, 342(6156): 341-344

[4]

YouJ, HongZ, YangY, ChenQ, CaiM, SongT B, ChenC, LuS, LiuY, ZhouH, YangY. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility [J]. ACS Nano, 2014, 8(2): 1674-1680

[5]

ChangJ, LiuK, LinS, YuanY, ZhouC, YangJ. Solution-processed perovskite solar cells [J]. Journal of Central South University, 2020, 27(4): 1104-1133

[6]

ChenW, ShiY, WangY, FengX, DjurišićA B, WooH Y, GuoX, HeZ. N-type conjugated polymer as efficient electron transport layer for planar inverted perovskite solar cells with power conversion efficiency of 20.86% [J]. Nano Energy, 2020, 68: 104363

[7]

Al-AshouriA, KöhnenE, LiB, MagomedovA, HempelH, CaprioglioP, MárquezJ A, MoralesV A B, KasparaviciusE, et al.. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction [J]. Science, 2020, 370(6522): 1300-1309

[8]

Al-AshouriA, MagomedovA, RoßM, JoštM, TalaikisM, ChistiakovaG, BertramT, MárquezJ A, KöhnenE, et al.. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells [J]. Energy & Environmental Science, 2019, 12(11): 3356-3369

[9]

ChenS, LiuY, XiaoX, YuZ, DengY, DaiX, NiZ, HuangJ. Identifying the soft nature of defective perovskite surface layer and its removal using a facile mechanical approach [J]. Joule, 2020, 4(12): 2661-2674

[10]

YangG, WangY, XuJ, LeiH, ChenC, ShanH, LiuX, XuZ, FangG. A facile molecularly engineered copper (II) phthalocyanine as hole transport material for planar perovskite solar cells with enhanced performance and stability [J]. Nano Energy, 2017, 31322-330

[11]

YangW S, ParkB W, JungE H, JeonN J, KimY C, LeeD U, ShinS S, SeoJ, KimE K, et al.. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells [J]. Science, 2017, 356(6345): 1376-1379

[12]

SaidA A, XieJ, ZhangQ. Recent progress in organic electron transport materials in inverted perovskite solar cells [J]. Small, 2019, 15(27): 1900854

[13]

SaidA A, XieJ, WangY, WangZ, ZhouY, ZhaoK, GaoW, MichinobuT, ZhangQ. Efficient inverted perovskite solar cells by employing N-type (D-A1-D-A2) polymers as electron transporting layer [J]. Small, 2019, 15291803339

[14]

GuP, WangN, WuA, WangZ, TianM, FuZ, SunX, ZhangQ. An azaacene derivative as promising electron-transport layer for inverted perovskite solar cells [J]. Chemistry-an Asian Journal, 2016, 11152135-2138

[15]

ChenC, LiuS, LiZ, WangF, XuW, MaH, ZhangS, WangL, GuC, et al.. Accurately stoichiometric regulating oxidation states in hole transporting material to enhance the hole mobility of perovskite solar cells [J]. Solar RRL, 2020, 4(6): 2000127

[16]

LeeP H, LiB, LeeC F, HuangZ, HuangY C, SuW. High-efficiency perovskite solar cell using cobalt doped nickel oxide hole transport layer fabricated by NIR process [J]. Solar Energy Materials and Solar Cells, 2020, 208110352

[17]

ZhuJ, SongW, ZhangT, DongQ, HuangJ, ZhouH, SuJ. Tetrabenzeneaza macrocycle: A novel platform for universal high-performance hole transport materials [J]. Dyes and Pigments, 2021, 186108981

[18]

KeW, FangG, LiuQ, XiongL, QinP, TaoH, WangJ, LeiH, LiB, et al.. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells [J]. Journal of the American Chemical Society, 2015, 137216730-6733

[19]

DengK, ChenQ, LiL. Modification engineering in SnO2 electron transport layer toward perovskite solar cells: Efficiency and stability [J]. Advanced Functional Materials, 2020, 30(46): 2004209

[20]

ZhangM, CuiX, WangY, WangB, YeM, WangW, MaC, LinZ. Simple route to interconnected, hierarchically structured, porous Zn2SnO4 nanospheres as electron transport layer for efficient perovskite solar cells [J]. Nano Energy, 2020, 71104620

[21]

MathiesF, List-KratochvilE J W, UngerE L. Advances in inkjet-printed metal halide perovskite photovoltaic and optoelectronic devices [J]. Energy Technology, 2020, 841900991

[22]

FengL, YuanJ, ZhangZ, PengH, ZhangZ G, XuS, LiuY, LiY, ZouY. Thieno[3, 2-b]pyrrolo-fused pentacyclic benzotriazole-based acceptor for efficient organic photovoltaics [J]. ACS Applied Materials & Interfaces, 2017, 93731985-31992

[23]

CaoR, ChenY, CaiF, ChenH, LiuW, GuanH, WeiQ, LiJ, ChangQ, et al.. A new chlorinated non-fullerene acceptor based organic photovoltaic cells over 12% efficiency [J]. Journal of Central South University, 2020, 27(12): 3581-3593

[24]

LiZ, ChenH, YuanJ, ZouJ, LiJ, GuanH, ZouY. A new low-bandgap polymer acceptor based on benzotriazole for efficient allpolymer solar cells [J]. Journal of Central South University, 2021, 28(7): 1919-1931

[25]

AhmadT, WilkB, RadicchiE, FuentesP R, SpinelliP, HerterichJ, CastriottaL A, DasguptaS, MosconiE, et al.. New fullerene derivative as an n-type material for highly efficient, flexible perovskite solar cells of a p-i-n configuration [J]. Advanced Functional Materials, 2020, 30(45): 2004357

[26]

XuJ, BuinA I P, AlexanderH, LiW, VoznyyO, CominR, YuanM, JeonS, NingZ, McdowellJ J, KanjanaboosP, SunJ P, LanX, QuanL, KimD H. Materials suppress hysteresis in planar diodes [J]. Nat Commun, 2015, 617081

[27]

GattiT, MennaE, MeneghettiM, MagginiM, PetrozzaA, LambertiF. The Renaissance of fullerenes with perovskite solar cells [J]. Nano Energy, 2017, 4184-100

[28]

ShaoY, XiaoZ, BiC, YuanY, HuangJ. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells [J]. Nature Communications, 2014, 55784

[29]

PonsecaC S, HutterE M, PiatkowskiP, CohenB, PascherT, DouhalA, YartsevA, SundströmV, SavenijeT J. Mechanism of charge transfer and recombination dynamics in organo metal halide perovskites and organic electrodes, PCBM, and spiro-OMeTAD: Role of dark carriers [J]. Journal of the American Chemical Society, 2015, 137(51): 16043-16048

[30]

ShaoY, YuanY, HuangJ. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells [J]. Nature Energy, 2016, 115001

[31]

XinH, SubramaniyanS, KwonT W, ShoaeeS, DurrantJ R, JenekheS A. Enhanced open circuit voltage and efficiency of donor-acceptor copolymer solar cells by using indene-C60 bisadduct [J]. Chemistry of Materials, 2012, 24(11): 1995-2001

[32]

LuoZ, WuF, ZhangT, ZengX, XiaoY, LiuT, ZhongC, LuX, ZhuL, et al.. Designing a perylene diimide/fullerene hybrid as effective electron transporting material in inverted perovskite solar cells with enhanced efficiency and stability [J]. Angewandte Chemie International Edition, 2019, 58(25): 8520-8525

[33]

LiuZ, LiuP, HeT, ZhaoL, ZhangX, YangJ, YangH, LiuH, QinR, et al.. Tuning surface wettability of buffer layers by incorporating polyethylene glycols for enhanced performance of perovskite solar cells [J]. ACS Applied Materials & Interfaces, 2020, 12(23): 26670-26679

[34]

ChenK, HuQ, LiuT, ZhaoL, LuoD, WuJ, ZhangY, ZhangW, LiuF, et al.. Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells [J]. Advanced Materials, 2016, 28(48): 10718-10724

[35]

LinH K, SuY, ChenH C, HuangY J, WeiK H. Block copolymer-tuned fullerene electron transport layer enhances the efficiency of perovskite photovoltaics [J]. ACS Applied Materials & Interfaces, 2016, 8(37): 24603-24611

[36]

JengJ Y, ChiangY, LeeM H, PengS R, GuoT F, ChenP, WenT C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells [J]. Advanced Materials, 2013, 25(27): 3727-3732

[37]

ShaoY, XiaoZ, BiC, YuanY, HuangJ. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells [J]. Nature Communications, 2014, 55784

[38]

MalinkiewiczO, YellaA, LeeY H, EspallargasG M, GraetzelM, NazeeruddinM K, BolinkH J. Perovskite solar cells employing organic charge-transport layers [J]. Nature Photonics, 2014, 8(2): 128-132

[39]

WeilT, WieslerU M, HerrmannA, BauerR, HofkensJ, DeS F C, MüllenK. Polyphenylene dendrimers with different fluorescent chromophores asymmetrically distributed at the periphery [J]. Journal of the American Chemical Society, 2001, 123(33): 8101-8108

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/