Hydraulic and thermal analysis of automatic transmission fluid in the presence of nano-particles and twisted tape: An experimental and numerical study

Ali Qasemian , Faranak Moradi , Amin Karamati , Ali Keshavarz , Amin Shakeri

Journal of Central South University ›› 2021, Vol. 28 ›› Issue (11) : 3404 -3417.

PDF
Journal of Central South University ›› 2021, Vol. 28 ›› Issue (11) : 3404 -3417. DOI: 10.1007/s11771-021-4864-x
Article

Hydraulic and thermal analysis of automatic transmission fluid in the presence of nano-particles and twisted tape: An experimental and numerical study

Author information +
History +
PDF

Abstract

In the present study, hydraulic and thermal behavior of an automatic transmission nano-fluid (ATNF) inside a tube with a twisted tape has been investigated. The heat transfer improvement and pressure drop of transmission oil for each of case of using twisted tape and nano-particles were also examined separately and compared with each other. The CuO nano-particles were used to prepare the ATNF. The effects of different Reynolds numbers and different mass fractions of nano-particle were investigated. The results showed that applying nano-particles and twisted tape simultaneously increases both the pressure drop and Nusselt number, on average by about 53% and 76%, respectively. By using a parameter, namely thermal performance index η, the effect of increasing heat transfer and pressure drop was studied simultaneously. The heat transfer improvement predominates the pressure drop increment in all cases. It was observed that the highest thermal performance of 1.9 was obtained at Re=634 and ϕ =2%. Furthermore, regarding the increment of the Nu number, it was shown that the use of twisted tapes individually could increase the average Nu number by 41%, while the max increment arising from individual use of 2% nano-particles is 13%, so using twisted tape is a more effective-technique for this case study.

Keywords

automatic transmission fluid (ATF) / nanofluid / twisted tape / heat transfer / thermal performance

Cite this article

Download citation ▾
Ali Qasemian, Faranak Moradi, Amin Karamati, Ali Keshavarz, Amin Shakeri. Hydraulic and thermal analysis of automatic transmission fluid in the presence of nano-particles and twisted tape: An experimental and numerical study. Journal of Central South University, 2021, 28(11): 3404-3417 DOI:10.1007/s11771-021-4864-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AliH M. Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems — A comprehensive review [J]. Solar Energy, 2020, 197: 163-198

[2]

TaleshB H R, AminianE, SaffariH. Energy transfer enhancement inside an annulus using gradient porous ribs and nanofluids [J]. Journal of Energy Resources Technology, 2020, 142(12): 122102

[3]

AbrarM N, SagheerM, HussianS. Entropy analysis of SWCNT MWCNT flow induced by collecting beating of cilia with porous medium [J]. Journal of Central South University, 2019, 2682109-2118

[4]

MalekiH, AlsarrafJ, MoghanizadehA, HajabdollahiH, SafaeiM R. Heat transfer and nanofluid flow over a porous plate with radiation and slip boundary conditions [J]. Journal of Central South University, 2019, 26(5): 1099-1115

[5]

GuptaM, SinghV, KumarR, SaidZ. A review on thermophysical properties of nanofluids and heat transfer applications [J]. Renewable and Sustainable Energy Reviews, 2017, 74: 638-670

[6]

LéalL, MiscevicM, LavieilleP, AmokraneM, PigacheF, TopinF, NogarèdeB, TadristL. An overview of heat transfer enhancement methods and new perspectives: Focus on active methods using electroactive materials [J]. International Journal of Heat and Mass Transfer, 2013, 61: 505-524

[7]

LotfiR, SaboohiY, RashidiA M. Numerical study of forced convective heat transfer of nanofluids: Comparison of different approaches [J]. International Communications in Heat and Mass Transfer, 2010, 37(1): 74-78

[8]

CHOI S U S, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles [C]// ASME Int Mech Eng Congr Expo, 1995: 99–105. https://www.osti.gov/servlets/purl/196525.

[9]

ChuW-x, TsaiC A, LeeB H, ChengK Y, WangC-chuan. Experimental investigation on heat transfer enhancement with twisted tape having various V-cut configurations [J]. Applied Thermal Engineering, 2020, 172: 115148

[10]

HeW, ToghraieD, LotfipourA, PourfattahF, KarimipourA, AfrandM. Effect of twisted-tape inserts and nanofluid on flow field and heat transfer characteristics in a tube [J]. International Communications in Heat and Mass Transfer, 2020, 110104440

[11]

YangL, DuK, ZhangX-song. Influence factors on thermal conductivity of ammonia-water nanofluids [J]. Journal of Central South University, 2012, 19(6): 1622-1628

[12]

SureshS, ChandrasekarM, SelvakumarP. Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under laminar flow in a helically dimpled tube [J]. Heat and Mass Transfer, 2012, 48(4): 683-694

[13]

TengT P, HungY H. Estimation and experimental study of the density and specific heat for alumina nanofluid [J]. Journal of Experimental Nanoscience, 2014, 9(7): 707-718

[14]

PakB C, ChoY I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles [J]. Experimental Heat Transfer, 1998, 11(2): 151-170

[15]

deR E, CosmeE H H, NevesR S, KuznetsovA Y, CamposA P C, LandiS M, AcheteC A. Application of the modulated temperature differential scanning calorimetry technique for the determination of the specific heat of copper nanofluids [J]. Applied Thermal Engineering, 2012, 4110-17

[16]

KumarV, SarkarJ. Particle ratio optimization of Al2O3-MWCNT hybrid nanofluid in minichannel heat sink for best hydrothermal performance [J]. Applied Thermal Engineering, 2020, 165: 114546

[17]

SetoodehH, KeshavarzA, GhasemianA, NasouhiA. Subcooled flow boiling of alumina/water nanofluid in a channel with a hot spot: An experimental study [J]. Applied Thermal Engineering, 2015, 90384-394

[18]

HayatT, AhmedB, AbbasiF M, AlsaediA. Peristalsis of nanofluid through curved channel with Hall and Ohmic heating effects [J]. Journal of Central South University, 2019, 26(9): 2543-2553

[19]

KoleM, DeyT K. Effect of aggregation on the viscosity of copper oxide-gear oil nanofluids [J]. International Journal of Thermal Sciences, 2011, 50(9): 1741-1747

[20]

SureshS, VenkitarajK P, SelvakumarP, ChandrasekarM. Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 388(1–3): 41-48

[21]

HeY, LiuL, LiP-x, MaL-xiang. Experimental study on heat transfer enhancement characteristics of tube with cross hollow twisted tape inserts [J]. Applied Thermal Engineering, 2018, 131: 743-749

[22]

VanakiS M, GanesanP, MohammedH A. Numerical study of convective heat transfer of nanofluids: A review [J]. Renewable and Sustainable Energy Reviews, 2016, 54: 1212-1239

[23]

CaoY, BaiY, DuJ, RashidiS. A computational fluid dynamics investigation on the effect of the angular velocities of hot and cold turbulator cylinders on the heat transfer characteristics of nanofluid flows within a porous cavity [J]. Journal of Energy Resources Technology, 2020, 142(11): 112104

[24]

MirzaeyanM, ToghraieD. Numerical investigation of laminar heat transfer and nanofluid flow between two porous horizontal concentric cylinders [J]. Journal of Central South University, 2019, 2671976-1999

[25]

HamiltonR L, CrosserO K. Thermal conductivity of heterogeneous two-component systems [J]. Industrial & Engineering Chemistry Fundamentals, 1962, 1(3): 187-191

[26]

YangL, XuX-yi. A renovated Hamilton-Crosser model for the effective thermal conductivity of CNTs nanofluids [J]. International Communications in Heat and Mass Transfer, 2017, 81: 42-50

[27]

SamiS. Analysis of nanofluids behavior in a PV-thermal-driven organic Rankine cycle with cooling capability [J]. Applied System Innovation, 2020, 3(1): 12

[28]

MunyaloJ M, ZhangX-l, XuX. Experimental investigation on supercooling, thermal conductivity and stability of nanofluid based composite phase change material [J]. Journal of Energy Storage, 2018, 17: 47-55

[29]

SiavashiM, GhasemiK, YousofvandR, DerakhshanS. Computational analysis of SWCNH nanofluid-based direct absorption solar collector with a metal sheet [J]. Solar Energy, 2018, 170252-262

[30]

ZhengY-z, WangS-q, D’OrazioA, KarimipourA, AfrandM. Forecasting and optimization of the viscosity of nano-oil containing zinc oxide nanoparticles using the response surface method and sensitivity analysis [J]. Journal of Energy Resources Technology, 2020, 142(11): 113004

[31]

Ramadhan Al-ObaidiA, ChaerI. Study of the flow characteristics, pressure drop and augmentation of heat performance in a horizontal pipe with and without twisted tape inserts [J]. Case Studies in Thermal Engineering, 2021, 25: 100964

[32]

SiavashiM, JamaliM. Erratum to: Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow [J]. Journal of Central South University, 2017, 24102486

[33]

LiZ-x, D’OrazioA, KarimipourA, BachQ V. Thermo-hydraulic performance of a lubricant containing zinc oxide nano-particles: A two-phase oil [J]. Journal of Energy Resources Technology, 2020, 14211112107

[34]

RezaeiG A, ShahidianA. Heat transfer enhancement in a curved tube by using twisted tape insert and turbulent nanofluid flow [J]. Journal of Thermal Analysis and Calorimetry, 2019, 13731059-1068

[35]

AlempourS M, AbbasianA A A, NajafizadehM M. Numerical investigation of nanofluid flow characteristics and heat transfer inside a twisted tube with elliptic cross section [J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(3): 1237-1257

[36]

Al-ObaidiA R, SharifA. Investigation of the three-dimensional structure, pressure drop, and heat transfer characteristics of the thermohydraulic flow in a circular pipe with different twisted-tape geometrical configurations [J]. Journal of Thermal Analysis and Calorimetry, 2021, 143(5): 3533-3558

[37]

PourfattahF, SabzpooshaniM, ToghraieD, AsadiA. Correction to: On the optimization of a vertical twisted tape arrangement in a channel subjected to MWCNT-water nanofluid by coupling numerical simulation and genetic algorithm [J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(1): 203

[38]

SamruaisinP, KunnarakK, ChuwattanakulV, Eiamsa-ArdS. Effect of sparsely placed twisted tapes installed with multiple-transverse twisted-baffles on heat transfer enhancement [J]. Journal of Thermal Analysis and Calorimetry, 2020, 14031159-1175

[39]

SiavashiM, MiriJ S M. Numerical performance analysis of a counter-flow double-pipe heat exchanger with using nanofluid and both sides partly filled with porous media [J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(2): 1595-1610

[40]

HasanpourA, FarhadiM, SedighiK. Intensification of heat exchangers performance by modified and optimized twisted tapes [J]. Chemical Engineering and Processing-Process Intensification, 2017, 120276-285

[41]

YoungG, KarimiN, MackenzieR. Numerical modeling of subcooled flow boiling and heat transfer enhancement: Validation and applicability to fusion reactor target design [J]. Journal of Energy Resources Technology, 2020, 142(11): 112105

[42]

ZhengL, XieY-h, ZhangD. Numerical investigation on heat transfer performance and flow characteristics in circular tubes with dimpled twisted tapes using Al2O3-water nanofluid [J]. International Journal of Heat and Mass Transfer, 2017, 111: 962-981

[43]

RakhshaM, AkbaridoustF, AbbassiA, MajidS A. Experimental and numerical investigations of turbulent forced convection flow of nano-fluid in helical coiled tubes at constant surface temperature [J]. Powder Technology, 2015, 283178-189

[44]

AlbojamalA, VafaiK. Analysis of single phase, discrete and mixture models, in predicting nanofluid transport [J]. International Journal of Heat and Mass Transfer, 2017, 114: 225-237

[45]

ColemanH W, SteeleW GExperimentation, validation, and uncertainty analysis for engineers [M], 2018, New Jersey, Wiley

[46]

MaïgaS E B, PalmS J, NguyenC T, RoyG, GalanisN. Heat transfer enhancement by using nanofluids in forced convection flows [J]. International Journal of Heat and Fluid Flow, 2005, 26(4): 530-546

[47]

TurgutA, TavmanI, ChirtocM, SchuchmannH P, SauterC, TavmanS. Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids [J]. International Journal of Thermophysics, 2009, 30(4): 1213-1226

[48]

MurshedS M S, LeongK C, YangC. Investigations of thermal conductivity and viscosity of nanofluids [J]. International Journal of Thermal Sciences, 2008, 47(5): 560-568

[49]

KriegerI M, DoughertyT J. A mechanism for non-Newtonian flow in suspensions of rigid spheres [J]. Transactions of the Society of Rheology, 1959, 3(1): 137-152

[50]

NielsenL E. Generalized equation for the elastic moduli of composite materials [J]. Journal of Applied Physics, 1970, 41(11): 4626-4627

[51]

BatchelorG K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles [J]. Journal of Fluid Mechanics, 1977, 83(1): 97-117

[52]

TimofeevaE V, GavrilovA N, MccloskeyJ M, TolmachevY V, SpruntS, LopatinaL M, SelingerJ V. Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory [J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2007, 76(6Pt1): 061203

[53]

MurshedS M S, LeongK C, YangC. Enhanced thermal conductivity of TiO2—water based nanofluids [J]. International Journal of Thermal Sciences, 2005, 444367-373

[54]

HassaniS, SaidurR, MekhilefS, HepbasliA. A new correlation for predicting the thermal conductivity of nanofluids; using dimensional analysis [J]. International Journal of Heat and Mass Transfer, 2015, 90: 121-130

[55]

EsmaeilzadehE, AlmohammadiH, NokhosteenA, MotezakerA, OmraniA N. Study on heat transfer and friction factor characteristics of γ-Al2O3/water through circular tube with twisted tape inserts with different thicknesses [J]. International Journal of Thermal Sciences, 2014, 82: 72-83

[56]

HashemiS M, Akhavan-BehabadiM A. An empirical study on heat transfer and pressure drop characteristics of CuO-base oil nanofluid flow in a horizontal helically coiled tube under constant heat flux [J]. International Communications in Heat and Mass Transfer, 2012, 39(1): 144-151

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/