BiScO3-BiFeO3-PbTiO3-BaTiO3 high-temperature piezoelectric ceramic and its application on high-temperature acoustic emission sensor

Chao Feng , Yun-yun Feng , Meng-jia Fan , Chao-hui Geng , Xiu-juan Lin , Chang-hong Yang , Shi-feng Huang

Journal of Central South University ›› 2022, Vol. 28 ›› Issue (12) : 3747 -3756.

PDF
Journal of Central South University ›› 2022, Vol. 28 ›› Issue (12) : 3747 -3756. DOI: 10.1007/s11771-021-4853-0
Article

BiScO3-BiFeO3-PbTiO3-BaTiO3 high-temperature piezoelectric ceramic and its application on high-temperature acoustic emission sensor

Author information +
History +
PDF

Abstract

Piezoelectric ceramic based high-temperature acoustic emission (AE) sensor is required urgently in the structural health monitoring of high-temperature fields. In this research, a series of 0.45(BiScxO3-BiFe1−xO3)-0.48PbTiO3-0.07BaTiO3 (BScxFe1−x-PT-BT, n(Sc)/n(Fe) =0.4/0.6 − 0.6/0.4) ceramics with both high Curie temperature and large piezoelectric constant were presented. The structure and electrical properties of BScxFe1−x-PT-BT ceramics as a function of n(Sc)/n(Fe) have been systematically investigated. All the ceramics possess a perovskite structure, and the phase approaches from the rhombohedral toward the tetragonal phase with the decrease of n(Sc)/n(Fe). The BSc0.5Fe0.5-PT-BT and BSc0.55Fe0.45-PT-BT piezoelectric ceramics exhibit good piezoelectricity (d33=250−281 pC/N), high Curie temperature (TC=430−450 °C) and excellent temperature stability. These improvements are greatly attributed to the balance between rhombohedral and tetragonal phase near morphotropic phase boundary with dense microstructure of ceramics. AE sensor based BSc0.5Fe0.5-PT-BT piezoelectric ceramic was designed, prepared and tested. The high-temperature stability of AE sensor was characterized through pencil-lead breaking with in situ high-temperature test. The noise of AE sensor is less than 40 dB, and the acoustic signal is up to 90 dB at 200 °C. As a result, AE sensors based on BScxFe1−x-PT-BT piezoelectric ceramics are expected to be applied into the structural health monitoring of high temperature fields.

Keywords

piezoelectric ceramics / high temperature / morphotropic phase boundary / phase transition / acoustic emission sensor

Cite this article

Download citation ▾
Chao Feng, Yun-yun Feng, Meng-jia Fan, Chao-hui Geng, Xiu-juan Lin, Chang-hong Yang, Shi-feng Huang. BiScO3-BiFeO3-PbTiO3-BaTiO3 high-temperature piezoelectric ceramic and its application on high-temperature acoustic emission sensor. Journal of Central South University, 2022, 28(12): 3747-3756 DOI:10.1007/s11771-021-4853-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DuY, FengG, KangH, ZhangY, ZhangX. Effects of different pull-out loading rates on mechanical behaviors and acoustic emission responses of fully grouted bolts [J]. Journal of Central South University, 2021, 28(7): 2052-2066

[2]

SuG, GanW, ZhaiS, ZhaoG. Acoustic emission precursors of static and dynamic instability for coarse-grained hard rock [J]. Journal of Central South University, 2020, 27(10): 2883-2898

[3]

SHROUT T, EITEL R, RANDALL C. Piezoelectric materials in devices [M]. EPFL Swiss Federal Institute Technology, 2002: 413.

[4]

KenjiUFerroelectric devices [M], 2010, New York, Taylor & Francis Group CRC Press, 171

[5]

EitelR E, RandallC A, ShroutT R, ParkS E. Preparation and characterization of high temperature perovskite ferroelectrics in the solid-solution (1-x)BiScO3-xPbTiO3 [J]. Japanese Journal of Applied Physics, 2002, 41: 2099

[6]

ChengJ R, ZhuW, LiN, CrossL E. Fabrication and characterization of xBiGaO3-(1-x)PbTiO3: A high temperature reduced Pb-content piezoelectric ceramic [J]. Materials Letters, 2003, 572090-2094

[7]

DuanR, SpeyerR F, AlbertaE, ShroutT R. High Curie temperature perovskite BiInO3-PbTiO3 ceramics [J]. Journal of Materials Research, 2004, 19: 2185-2193

[8]

ComynT P, McbrideS P, BellA J. Processing and electrical properties of BiFeO3-PbTiO3 ceramics [J]. Materials Letters, 2004, 58: 3844-3846

[9]

RanjanR, KalyaniA K, GargR, KrishnaP S R. Structure and phase transition of the (1-x)PbTiO3-(x)BiAlO3 system [J]. Solid State Communication, 2009, 149: 2098-2101

[10]

AmorínH, JiménezR, VilaE, DollébM, CastroA, AlgueróM. Electrical properties of ferroelectric BiMnO3-PbTiO3 under tailored synthesis and ceramic processing [J]. Phase Transitions, 2013, 86(7): 681-694

[11]

SuchomelM R, DaviesP K. Enhanced tetragonality in (x)PbTiO3-(1-x)Bi(Zn1/2Ti1/2)O3 and related solid solution systems[J]. Applied Physics Letters, 2005, 86: 262905

[12]

RaiR, KholkinA L, SharmaS. Multiferroic properties of BiFeO3 doped Bi(MgTi)O3-PbTiO3 ceramic system [J]. Journal of Alloys and Compounds, 2010, 506815-819

[13]

LeistT, ChenJ, JoW, SuffnerJ, RödelJ. Temperature dependence of the piezoelectric coefficient in BiMeO3-PbTiO3 (Me=Fe, Sc, (Mg1/2Til/2)) ceramics [J]. Journal of the American Ceramic Society, 2011, 95(2): 711-715

[14]

XieZ, YueZ, RuehlG, PengB, ZhangJ, YuQ, ZhangX, LiL. Bi (Ni1/2Zr1/2)O3-PbTiO3 relaxor-ferroelectric films for piezoelectric energy harvesting and electrostatic storage [J]. Applied Physics Letters, 2014, 104: 243902

[15]

EitelR E, RandallC A, ShroutT R, RehrigP W, HackenbergerW, ParkS E. New high temperature morphotropic phase boundary piezoelectrics based on Bi(Me) O3-PbTiO3 ceramics [J]. Japanese Journal of Applied Physics, 2001, 405999

[16]

DongY Z, ZhouZ Y, LiangR H, DongX L. Correlation between the grain size and phase structure, electrical properties in BiScO3-PbTiO3-based piezoelectric ceramics [J]. Journal of the American Ceramic Society, 2020, 103(9): 4785-4793

[17]

YuY, YangJ K, WuJ G, GaoX Y, BianL, LiX T, XinX D, YuZ H, ChenW P, DongS X. Ultralow dielectric loss of BiScO3-PbTiO3 ceramics by Bi(Mn1/2Zr1/2)O3 modification [J]. Journal of the European Ceramic Society, 2020, 403003-3010

[18]

AnjumG, KumarR, MollahS, ShuklaD K, KumarS, LeeC G. Structural, dielectric, and magnetic properties of La0.8Bi0.2Fe1−xMnxO3 (0.0⩽x⩽0.4) multiferroics [J]. Journal of Applied Physics, 2010, 107: 103916

[19]

JiangQ, NanC, ShenZ. Synthesis and properties of multiferroic La-modified BiFeO3 ceramics [J]. Journal of the American Ceramic Society, 2006, 892123-2127

[20]

KumarM, YadavK L. Study of room temperature magnetoelectric coupling in Ti substituted bismuth ferrite system [J]. Journal of Applied Physics, 2006, 100: 074111

[21]

ZhengT, WuJ. Effects of site engineering and doped element types on piezoelectric and dielectric properties of bismuth ferrite lead-free ceramics [J]. Journal of Materials Chemistry C, 2015, 3(43): 11326-11334

[22]

LeeM H, KimD J, ChoiH I, KimM H, SongT K, KimW J, DoD. Thermal quenching effects on the ferroelectric and piezoelectric properties of BiFeO3-BaTiO3 ceramics [J]. ACS Applied Electronic Materials, 2019, 11772-1780

[23]

KimD J, LeeM H, SongT K. Comparison of multi-valent manganese oxides (Mn41, Mn31, and Mn21) doping in BiFeO3-BaTiO3 piezoelectric ceramics [J]. Journal of the European Ceramic Society, 2019, 39: 4697-4704

[24]

TongK, ZhouC, LiQ, WangJ, YangL, XuJ, ChenG, YuanC, RaoG. Enhanced piezoelectric response and high-temperature sensitivity by site selected doping of BiFeO3-BaTiO3 ceramics [J]. Journal of the European Ceramic Society, 2018, 38: 1356-1366

[25]

ChenJ G, ChengJ R, GuoJ, ChengZ X, WangJ L, LiuH B, ZhangS J. Excellent thermal stability and aging behaviors in BiFeO3 — BaTiO3 piezoelectric ceramics with rhombohedral phase [J]. Journal of the American Ceramic Society, 2020, 103: 374-381

[26]

HabibM, LeeM H, KimD J, AkramF, ChoiH I, KimM H, KimW J, SongT K. Phase diagram for Bi-site Ladoped BiFeO3-BaTiO3 lead-free piezoelectric ceramics [J]. Journal of Materiomics, 2021, 7: 40-50

[27]

ZhengT, JiangZ, WuJ. Enhanced piezoelectricity in (1-x)Bi1.05Fe1-yAyO3-xBaTiO3 lead-free ceramics: Site engineering and wide phase boundary region [J]. Dalton Transactions, 2016, 45: 11277-11285

[28]

IsupovV. Dielectric polarization of PbTiO3-PbZrO3 solid solutions [J]. Soviet Physics Solid State, USSR, 1970, 12(5): 1084

[29]

ZhangS, YuF. Piezoelectric materials for high temperature sensors [J]. Journal of the American Ceramic Society, 2011, 94103153-3170

[30]

LeeH S, KimuraT. Effects of microstructure on the dielectric and piezoelectric properties of lead metaniobate [J]. Journal of the American Ceramic Society, 1998, 81(12): 3228-3236

[31]

LiY, ChengL, GuX, ZhangY, LiaoR. Piezoelectric and dielectric properties of PbNb2O6-based piezoelectric ceramics with high Curie temperature [J]. Journal of Materials Processing Technology, 2008, 197: 170-173

[32]

WangC, WangJ. Aurivillius phase potassium bismuth titanate: K0.5Bi4.5Ti4O15 [J]. Journal of the American Ceramic Society, 2008, 91(3): 918-923

[33]

AmorínH, CorreasC, Fernández-PosadaC M, PeñaO, CastroA, AlgueróM. Multiferroism and enhancement of material properties across the morphotropic phase boundary of BiFeO3-PbTiO3 [J]. Journal of Applied Physics, 2014, 115: 104104

[34]

SongT H, EitelR E, ShroutT R, RandallC A. Dielectric and piezoelectric properties in the BiScO3-PbTiO3-PM·SnO2 ternary system [J]. Japanese Journal of Applied Physics, 2004, 435392

[35]

LinQ, HeC, LongX. Structural, electric and magnetic properties of BiFeO3-Pb (Mg1/3Nb2/3)O3-PbTiO3 ternary ceramics [J]. Journal of Electroceramics, 2016, 368-15

[36]

FanL, ChenJ, LiS, KangH, LiuL, FangL, XingX. Enhanced piezoelectric and ferroelectric properties in the BaZrO3 substituted BiFeO3-PbTiO3 [J]. Applied Physics Letters, 2013, 102: 022905

[37]

NingZ, JiangY, JianJ, GuoJ, ChengJ, ChengH, ChenJ. Achieving both large piezoelectric constant and high Curie temperature in BiFeO3-PbTiO3-BaTiO3 solid solution [J]. Journal of the European Ceramic Society, 2020, 402338-2344

[38]

JiaH, HuX, ChenJ. Temperature-dependent piezoelectric strain and resonance performance of Fe2O3-modified BiScO3-PbTiO3-Pb(Nb1/3Mn2/3)O3 ceramics [J]. Journal of the European Ceramic Society, 2019, 39(7): 2348-2353

[39]

ChenJ, DongY, ChengJ. Reduced dielectric loss and strain hysteresis in (0.97-x)BiScO3-xPbTiO3-0.03Pb(Mn1/3Nb2/3)O3 piezoelectric ceramics [J]. Ceramics International, 2015, 41: 9828-9833

[40]

GaoB, YaoZ, LaiD, GuoQ, PanW, HaoH, CaoM, LiuH. Unexpectedly high piezoelectric response in Sm-doped PZT ceramics beyond the morphotropic phase boundary region [J]. Journal of Alloys and Compounds, 2020, 836155474

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/