Ferroelectric polarization-enhanced photocatalytic performance of heterostructured BaTiO3@TiO2 via interface engineering

Bao-yan Fan , Hai-bo Liu , Zhen-hui Wang , Yi-wen Zhao , Sen Yang , Si-yi Lyu , An Xing , Jun Zhang , He Li , Xiao-yan Liu

Journal of Central South University ›› 2022, Vol. 28 ›› Issue (12) : 3778 -3789.

PDF
Journal of Central South University ›› 2022, Vol. 28 ›› Issue (12) : 3778 -3789. DOI: 10.1007/s11771-021-4847-y
Article

Ferroelectric polarization-enhanced photocatalytic performance of heterostructured BaTiO3@TiO2 via interface engineering

Author information +
History +
PDF

Abstract

A catalyst of ferroelectric-BaTiO3@photoelectric-TiO2 nanohybrids (BaTiO3@TiO2) with enhanced photocatalytic activity was synthesized via a hydrolysis precipitation combined with a hydrothermal approach. Compared to pure TiO2, pure BaTiO3 and BaTiO3/TiO2 physical mixture, the heterostructured BaTiO3@TiO2 exhibits significantly improved photocatalytic activity and cycling stability in decomposing Rhodamine B (RhB) and the degradation efficiency is 1.7 times higher than pure TiO2 and 7.2 times higher than pure BaTiO3. These results are mainly attributed to the synergy effect of photoelectric TiO2, ferroelectric-BaTiO3 and the rationally designed interfacial structure. The mesoporous microstructure of TiO2 is of a high specific area and enables excellent photocatalytic activity. The ferroelectric polarization induced built-in electric field in BaTiO3 nanoparticles, and the intimate interfacial interactions at the interface of BaTiO3 and TiO2 are effective in driving the separation and transport of photogenerated charge carriers. This strategy will stimulate the design of heterostructured photocatalysts with outstanding photocatalytic performance via interface engineering.

Keywords

heterostructured BaTiO3@TiO2 / ferroelectric polarization / interfacial interactions / photocatalytic activity

Cite this article

Download citation ▾
Bao-yan Fan, Hai-bo Liu, Zhen-hui Wang, Yi-wen Zhao, Sen Yang, Si-yi Lyu, An Xing, Jun Zhang, He Li, Xiao-yan Liu. Ferroelectric polarization-enhanced photocatalytic performance of heterostructured BaTiO3@TiO2 via interface engineering. Journal of Central South University, 2022, 28(12): 3778-3789 DOI:10.1007/s11771-021-4847-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

IsmailM, WuZ, ZhangL, MaJ, JiaY, HuY, WangY. High-efficient synergy of piezocatalysis and photocatalysis in bismuth oxychloride nanomaterial for dye decomposition [J]. Chemosphere, 2019, 228: 212-218

[2]

MaJ, RenJ, JiaY, WuZ, ChenL, HaugenN O, HuangH, LiuY. High efficiency bi-harvesting light/vibration energy using piezoelectric zinc oxide nanorods for dye decomposition [J]. Nano Energy, 2019, 62: 376-383

[3]

HanF, KambalaV S R, SrinivasanM, RajarathnamD, NaiduR. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review [J]. Applied Catalysis A: General, 2009, 359(12): 25-40

[4]

WangH, FangX, WanY, ZhanJ, WangZ, LiuH. Visible-lightinduced NiCo2O4@Co3O4 core/shell heterojunction photocatalysts for efficient removal of organic dyes [J]. Journal of Central South University, 2021, 28(10): 3040-3049

[5]

YangB, WuC, WangJ, BianJ, WangL, LiuM, DuY, YangY. When C3N4 meets BaTiO3: Ferroelectric polarization plays a critical role in building a better photocatalyst [J]. Ceramics International, 2020, 46(4): 4248-4255

[6]

LeiH, ZhangH, ZouY, DongX, JiaY, WangF. Synergetic photocatalysis/piezocatalysis of bismuth oxybromide for degradation of organic pollutants [J]. Journal of Alloys and Compounds, 2019, 809: 151840

[7]

WangJ, TafenN, LewisJ P, HongZ, ManivannanA, ZhiM, LiM, WuN. Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts [J]. Journal of the American Chemical Society, 2009, 131(34): 12290-12297

[8]

SinghS, FarazM, KhareN. Recent advances in semiconductor-graphene and semiconductor-ferroelectric/ferromagnetic nanoheterostructures for efficient hydrogen generation and environmental remediation [J]. ACS Omega, 2020, 5(21): 11874-11882

[9]

TanX, ZhouS, TaoH, WangW, WanQ, ZhangK. Influence of Ag on photocatalytic performance of Ag/ZnO nanosheet photocatalysts [J]. Journal of Central South University, 2019, 26(7): 2011-2018

[10]

JinL, ChaiL, SongT, YangW, WangH. Preparation of magnetic Fe3O4@Cu/Ce microspheres for efficient catalytic oxidation co-adsorption of arsenic(III) [J]. Journal of Central South University, 2020, 27(4): 1176-1185

[11]

YaoS, ZhangX, QuF, UmarA, WuX. Hierarchical WO3 nanostructures assembled by nanosheets and their applications in wastewater purification [J]. Journal of Alloys and Compounds, 2016, 689570-574

[12]

NingX, LuG. Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting [J]. Nanoscale, 2020, 12(3): 1213-1223

[13]

WuF, YuY, YangH, et al.. Simultaneous enhancement of charge separation and hole transportation in a TiO2-SrTiO3 core-shell nanowire photoelectrochemical system [J]. Advanced Materials, 2017, 29(28): 1701432

[14]

ZhangJ, XuQ, FengZ, LiM, LiC. Importance of the relationship between surface phases and photocatalytic activity of TiO2 [J]. Angewandte Chemie International Edition, 2008, 4791766-1769

[15]

YangN, LiuY, WenH, TangZ, ZhaoH, LiY, WangD. Photocatalytic properties of graphdiyne and graphene modified TiO2: From theory to experiment [J]. ACS Nano, 2013, 7(2): 1504-1512

[16]

LiS, LinY, ZhangB, LiJ, NanC. BiFeO3/TiO2 core-shell structured nanocomposites as visible-active photocatalysts and their optical response mechanism [J]. Journal of Applied Physics, 2009, 105(5): 054310

[17]

CuiY, BriscoeJ, WangY, TarakinaN V, DunnS. Enhanced photocatalytic activity of heterostructured ferroelectric BaTiO3/a-Fe2O3 and the significance of interface morphology control [J]. ACS Applied Materials & Interfaces, 2017, 92924518-24526

[18]

LiL, LiuX, ZhangY, SalvadorP A, RohrerG S. Heterostructured (Ba, Sr)TiO3/TiO2 core/shell photocatalysts: Influence of processing and structure on hydrogen production [J]. International Journal of Hydrogen Energy, 2013, 38(17): 6948-6959

[19]

LiL, RohrerG S, SalvadorP A. Heterostructured ceramic powders for photocatalytic hydrogen production: Nanostructured TiO2 shells surrounding microcrystalline (ba, Sr)TiO3 cores [J]. Journal of the American Ceramic Society, 2012, 95(4): 1414-1420

[20]

FengK, LiuX, SiD, TangX, XingA, OsadaM, XiaoP. Ferroelectric BaTiO3 dipole induced charge transfer enhancement in dye-sensitized solar cells [J]. Journal of Power Sources, 2017, 350: 35-40

[21]

YangW, YuY, StarrM B, YinX, LiZ, KvitA, WangS, ZhaoP, WangX. Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2-BaTiO3 core-shell nanowire photoanodes [J]. Nano Letters, 2015, 15(11): 7574-7580

[22]

HuangH, LiD, LinQ, ShaoY, ChenW, HuY, ChenY, FuX. Efficient photocatalytic activity of PZT/TiO2 heterojunction under visible light irradiation [J]. The Journal of Physical Chemistry C, 2009, 113(32): 14264-14269

[23]

WangZ, SongJ, GaoF, SuR, ZhangD, LiuY, XuC, LouX, YangY. Developing a ferroelectric nanohybrid for enhanced photocatalysis [J]. Chemical Communications (Cambridge, England), 2017, 53(54): 7596-7599

[24]

SuE C, HuangB, LeeJ T, WeyM Y. Excellent dispersion and charge separation of SrTiO3-TiO2 nanotube derived from a two-step hydrothermal process for facilitating hydrogen evolution under sunlight irradiation [J]. Solar Energy, 2018, 159: 751-759

[25]

KooY S, SongK M, HurN, et al.. Strain-induced magnetoelectric coupling in BaTiO3/Fe3O4 core/shell nanoparticles [J]. Applied Physics Letters, 2009, 94(3): 032903

[26]

GuanB Y, GuanB Y, YuL, LiJ, LouX W. A universal cooperative assembly-directed method for coating of mesoporous TiO2 nanoshells with enhanced lithium storage properties [J]. Science Advances, 2016, 23e1501554

[27]

LiuX Y, LvS, FanB Y, XingA, JiaB. Ferroelectric polarization-enhanced photocatalysis in BaTiO3-TiO2 core-shell heterostructures [J]. Nanomaterials (Basel, Switzerland), 2019, 98E1116

[28]

HafidL, GodefroyG, ElI A, Michel-CalendiniF. Absorption spectrum in the near U. V. and electronic structure of pure Barium titanate [J]. Solid State Communications, 1988, 668841-845

[29]

HurumD C, AgriosA G, GrayK A, RajhT, ThurnauerM C. Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR [J]. The Journal of Physical Chemistry B, 2003, 107(19): 4545-4549

[30]

PolkingM J, HanM G, YourdkhaniA, et al.. Ferroelectric order in individual nanometre-scale crystals [J]. Nature Materials, 2012, 11(8): 700-709

[31]

GuoJ, ZhuZ, QuanH, DuanW, GaoJ. Domain switchings within BaTiO3 nanofibers under different polarizing voltages and loading forces [J]. Ceramics International, 2017, 43(3): 3113-3117

[32]

ChenJ, LuH, LiuH J, ChuY, DunnS, KenO K, GruvermanA, ValanoorN. Interface control of surface photochemical reactivity in ultrathin epitaxial ferroelectric films [J]. Applied Physics Letters, 2013, 102(18): 182904

[33]

LiuG, ChenJ, LichtensteigerC, TrisconeJ M, Aguado-PuenteP, JunqueraJ, ValanoorN. Positive effect of an internal depolarization field in ultrathin epitaxial ferroelectric films [J]. Advanced Electronic Materials, 2016, 211500288

[34]

YangC, WangW, ShanZ, HuangF. Preparation and photocatalytic activity of high-efficiency visible-light-responsive photocatalyst SnSx/TiO2 [J]. Journal of Solid State Chemistry, 2009, 1824807-812

AI Summary AI Mindmap
PDF

255

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/