Ti3C2Tx MXene for organic/perovskite optoelectronic devices

Ke-fan Chen , Ping Cai , Hong-liang Peng , Xiao-gang Xue , Zhong-min Wang , Li-xian Sun

Journal of Central South University ›› 2022, Vol. 28 ›› Issue (12) : 3935 -3958.

PDF
Journal of Central South University ›› 2022, Vol. 28 ›› Issue (12) : 3935 -3958. DOI: 10.1007/s11771-021-4846-z
Article

Ti3C2Tx MXene for organic/perovskite optoelectronic devices

Author information +
History +
PDF

Abstract

MXenes are emerging two-dimensional (2D) nanomaterials composed of transition metal carbides and/or nitrides and possess unique layered structures with abundant surface functional groups, which enable them with excellent and tunable properties. MXenes films can be solution-processed in polar solvents and are very suitable for optoelectronic device applications. Especially, Ti3C2Tx MXene with the clear advantages of facile synthesis, flexible surface controlling, easily tunable work function, high optical transmittance and excellent conductivity shows great potential for applications in organic/perovskite optoelectronic devices. Therefore, this review briefly introduces the mainstream synthesis methods, optical and electrical properties of MXenes, and comprehensively summarizes the versatile applications of Ti3C2Tx MXene in different functional layers (electrode, interface layer and active layer) of organic/perovskite optoelectronic devices including solar cells and light-emitting diodes. Finally, the current application characteristics and the future possibilities of MXenes in organic/perovskite optoelectronic devices are concluded and discussed.

Keywords

Ti3C2Tx MXene / organic/perovskite solar cells / organic/perovskite light-emitting diodes / electrode / interface layer / active layer

Cite this article

Download citation ▾
Ke-fan Chen, Ping Cai, Hong-liang Peng, Xiao-gang Xue, Zhong-min Wang, Li-xian Sun. Ti3C2Tx MXene for organic/perovskite optoelectronic devices. Journal of Central South University, 2022, 28(12): 3935-3958 DOI:10.1007/s11771-021-4846-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GeimA K, NovoselovK S. The rise of graphene [J]. Nature Materials, 2007, 6(3): 183-191

[2]

AllenM J, TungV C, KanerR B. Honeycomb carbon: A review of graphene [J]. Chemical Reviews, 2010, 110(1): 132-145

[3]

LiuH, NealA T, ZhuZ, LuoZ, XuX, TomanekD, YeP D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility [J]. ACS Nano, 2014, 8(4): 4033-4041

[4]

RamakrishnaM H S S, GomathiA, MannaA K, LateD J, DattaR, PatiS K, RaoC N R. MoS2 and WS2 analogues of graphene [J]. Angewandte Chemie International Edition, 2010, 49(24): 4059-4062

[5]

ZhangX, LiW, LingZ, ZhangY, XuJ, WangH, ChenG, WeiB. Facile synthesis of solution-processed MoS2 nanosheets and their application in high-performance ultraviolet organic light-emitting diodes [J]. Journal of Materials Chemistry C, 2019, 7(4): 926-936

[6]

NaguibM, KurtogluM, PresserV, LuJ, NiuJ, HeonM, HultmanL, GogotsiY, BarsoumM W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Advanced Materials, 2011, 23(37): 4248-4253

[7]

VahidmohammadiA, RosenJ, GogotsiY. The world of two-dimensional carbides and nitrides (MXenes) [J]. Science, 2021, 372(6547): eabf1581

[8]

SoundirarajuB, GeorgeB K. Two-dimensional titanium nitride (Ti2N) MXene: Synthesis, characterization, and potential application as surface-enhanced raman scattering substrate [J]. ACS Nano, 2017, 1198892-8900

[9]

NaguibM, HalimJ, LuJ, CookK M, HultmanL, GogotsiY, BarsoumM W. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries [J]. Journal of the American Chemical Society, 2013, 135(43): 15966-15969

[10]

HalimJ, KotaS, LukatskayaM R, NaguibM, ZhaoM, MoonE J, PitockJ, NandaJ, MayS J, GogotsiY, BarsoumM W. Synthesis and characterization of 2D molybdenum carbide (MXene) [J]. Advanced Functional Materials, 2016, 26(18): 3118-3127

[11]

DeysherG, ShuckC E, HantanasirisakulK, FreyN C, FoucherA C, MaleskiK, SarychevaA, ShenoyV B, StachE A, AnasoriB, GogotsiY. Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals [J]. ACS Nano, 2020, 14(1): 204-217

[12]

WangC, ChenS, SongL. Tuning 2D MXenes by surface controlling and interlayer engineering: Methods, properties, and synchrotron radiation characterizations [J]. Advanced Functional Materials, 2020, 30(47): 2000869

[13]

AnasoriB, LukatskayaM R, GogotsiY. 2D metal carbides and nitrides (MXenes) for energy storage [J]. Nature Reviews Materials, 2017, 2216098

[14]

MingF, LiangH, HuangG, BayhanZ, AlshareefH N. MXenes for rechargeable batteries beyond the lithium-ion [J]. Advanced Materials, 2020, 3312004039

[15]

TangJ, MathisT, ZhongX, XiaoX, WangH, AnayeeM, PanF, XuB, GogotsiY. Optimizing ion pathway in titanium carbide MXene for practical high-rate supercapacitor [J]. Advanced Energy Materials, 2020, 1142003025

[16]

ZhangY, WangY, JiangQ, EldemellawiJ K, KimH, AlshareefH N. MXene printing and patterned coating for device applications [J]. Advanced Materials, 2020, 32211908486

[17]

LiZ, WuY. 2D early transition metal carbides (MXenes) for catalysis [J]. Small, 2019, 1529e1804736

[18]

ZhangY-Z, El-DemellawiJ K, JiangQ, GeG, LiangH, LeeK, DongX, AlshareeH N. MXene hydrogels: Fundamentals and applications [J]. Chemical Society Reviews, 2020, 49207229-7251

[19]

HaoC, WuY, AnY, CuiB, LinJ, LiX, WangD, JiangM, ChengZ, HuS. Interface-coupling of CoFe-LDH on MXene as high-performance oxygen evolution catalyst [J]. Materials Today Energy, 2019, 12: 453-462

[20]

ShahzadF, AlhabebM, HatterC B, AnasoriB, HongS M, KooC M, GogotsiY. Electromagnetic interference shielding with 2D transition metal carbides (MXenes) [J]. Science, 2016, 353(6304): 1137-1140

[21]

YunT, KimH, IqbalA, ChoY S, LeeG S, KimM, KimS J, KimD, GogotsiY, KimS O, KooC M. Electromagnetic shielding of monolayer MXene assemblies [J]. Advanced Materials, 2020, 32(9): 1906769

[22]

UzunS, HanM, StrobelC J, HantanasirisakulK, GoadA, DionG, GogotsiY. Highly conductive and scalable Ti3C2Tx-coated fabrics for efficient electromagnetic interference shielding [J]. Carbon, 2021, 174: 382-389

[23]

HO D H, CHOI Y Y, JO S B, MYOUNG J, CHO J H. Sensing with MXenes: Progress and prospects [J]. Advanced Materials, 2021: 2005846. DOI: https://doi.org/10.1002/adma.202005846.

[24]

MaC, MaM, SiC, JiX, WanP. Flexible MXene-based composites for wearable devices [J]. Advanced Functional Materials, 2021, 31(22): 2009524

[25]

AhmedA, HossainM M, AdakB, MukhopadhyayS. Recent advances in 2D MXene integrated smart-textile interfaces for multifunctional applications [J]. Chemistry of Materials, 2020, 322410296-10320

[26]

KimH, AlshareefH N. MXetronics: MXene-enabled electronic and photonic devices [J]. ACS Materials Letters, 2019, 2(1): 55-70

[27]

FanX. Doping and design of flexible transparent electrodes for high — performance flexible organic solar cells: Recent advances and perspectives [J]. Advanced Functional Materials, 2020, 31(8): 2009399

[28]

XuH, RenA, WuJ, WangZ. Recent advances in 2D MXenes for photodetection [J]. Advanced Functional Materials, 2020, 30242000907

[29]

ZhangX, ShaoJ, YanC, QinR, LuZ, GengH, XuT, JuL. A review on optoelectronic device applications of 2D transition metal carbides and nitrides [J]. Materials and Design, 2021, 200109452

[30]

YinL, LiY, YaoX, WangY, JiaL, LiuQ, LiJ, LiY, HeD. MXenes for solar cells [J]. Nano-Micro Letters, 2021, 13178

[31]

PalilisL C, VasilopoulouM, VerykiosA, SoultatiA, PolydorouE, ArgitisP, DavazoglouD, YusoffA R B M, NazeeruddinM K. Inorganic and hybrid interfacial materials for organic and perovskite solar cells [J]. Advanced Energy Materials, 2020, 10272000910

[32]

JeongJ, ParkJ H, JangC H, SongM H, WooH Y. Multifunctional charge transporting materials for perovskite light-emitting diodes [J]. Advanced Materials, 2020, 32512002176

[33]

ParkS, KimT, YoonS, KohC W, WooH Y, SonH J. Progress in materials, solution processes, and long-term stability for large-area organic photovoltaics [J]. Advanced Materials, 2020, 32512002217

[34]

JeonS O, LeeK H, KimJ S, IhnS, ChungY S, KimJ W, LeeH, KimS, ChoiH, LeeJ Y. High-efficiency, long-lifetime deep-blue organic light-emitting diodes [J]. Nature Photonics, 2021, 153208-215

[35]

SeredychM, ShuckC E, PintoD, AlhabebM, PrecettiE, DeysherG, AnasoriB, KurraN, GogotsiY. High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis [J]. Chemistry of Materials, 2019, 31(9): 3324-3332

[36]

LiM, LuJ, LuoK, LiY, ChangK, ChenK, ZhouJ, RosenJ, HultmanL, EklundP, PerssonP O Å, DuS, ChaiZ, HuangZ, HuangQ. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes [J]. Journal of the American Chemical Society, 2019, 1414730-4737

[37]

LiY, ShaoH, LinZ, LuJ, LiuL, DuployerB, PerssonP O A, EklundP, HultmanL, LiM, ChenK, ZhaX, DuS, RozierP, ChaiZ, Raymundo-PineroE, TabernaP, SimonP, HuangQ. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte [J]. Nature Materials, 2020, 19: 894-899

[38]

LiM, LiX, QinG, LuoK, LuJ, LiY, LiangG, HuangZ, ZhouJ, HultmanL, EklundP, Persson PerO A, DuS, ChaiZ, ZhiC, HuangQ. Halogenated Ti3C2 MXenes with electrochemically active terminals for highperformance zinc ion batteries [J]. ACS Nano, 2020, 15(1): 1077-1085

[39]

LiT, YaoL, LiuQ, GuJ, LuoR, LiJ, YanX, WangW, LiuP, ChenB, ZhangW, AbbasW, NazR, ZhangD. Fluorine — free synthesis of high — purity Ti3C2Tx (T=OH, O) via alkali treatment [J]. Angewandte Chemie International Edition, 2018, 57(21): 6115-6119

[40]

HuangL, LiT, LiuQ, GuJ. Fluorine-free Ti3C2Tx as anode materials for Li-ion batteries [J]. Electrochemistry Communications, 2019, 104: 106472

[41]

YangS, ZhangP, NiaA S, FengX. Emerging 2D materials produced via electrochemistry [J]. Advanced Materials, 2020, 32(10): 1907857

[42]

AlhabebM, MaleskiK, AnasoriB, LelyukhP, ClarkL, SinS, GogotsiY. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2TXMXene) [J]. Chemistry of Materials, 2017, 29187633-7644

[43]

ShekhirevM, ShuckC E, SarychevaA, GogotsiY. Characterization of MXenes at every step, from their precursors to single flakes and assembled films [J]. Progress in Materials Science, 2020, 120100757

[44]

MaleskiK, ShuckC E, FafarmanA T, GogotsiY. The broad chromatic range of two — dimensional transition metal carbides [J]. Advanced Optical Materials, 2020, 9(4): 2001563

[45]

ZhangJ, KongN, UzunS, LevittA, SeyedinS, LynchP A, QinS, HanM, YangW, LiuJ, WangX, GogotsiY, RazalJ M. Scalable manufacturing of free-standing, strong Ti3C2TX MXene films with outstanding conductivity [J]. Advanced Materials, 2020, 32232001093

[46]

ZhangQ, LaiH, FanR, JiP, FuX, LiH. High concentration of Ti3C2Tx MXene in organic solvent [J]. ACS Nano, 2021, 1535249-5262

[47]

KimH, AnasoriB, GogotsiY, AlshareefH N. Thermoelectric properties of two-dimensional molybdenum-based MXenes [J]. Chemistry of Materials, 2017, 29(15): 6472-6479

[48]

HantanasirisakulK, GogotsiY. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes) [J]. Advanced Materials, 2018, 30(52): 1804779

[49]

DillonA D, GhidiuM J, KrickA L, GriggsJ, MayS J, GogotsiY, BarsoumM W, FafarmanA T. Highly conductive optical quality solution-processed films of 2D titanium carbide [J]. Advanced Functional Materials, 2016, 26234162-4168

[50]

HantanasirisakulK, ZhaoM, UrbankowskiP, HalimJ, AnasoriB, KotaS, RenC E, BarsoumM W, GogotsiY. Fabrication of Ti3C2TX MXene transparent thin films with tunable optoelectronic properties [J]. Advanced Electronic Materials, 2016, 2(6): 1600050

[51]

MathisT S, MaleskiK, GoadA, SarychevaA, AnayeeM, FoucherA C, HantanasirisakulK, ShuckC E, StachE A, GogotsiY. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2MXene [J]. ACS Nano, 2021, 1546420-6429

[52]

LipatovA, AlhabebM, LuH, ZhaoS, LoesM J, VorobevaN S, Dall’agneseY, GaoY, GruvermanA, GogotsiY, SinitskiiA. Electrical and elastic properties of individual single — layer Nb4C3TX MXene flakes [J]. Advanced Electronic Materials, 2020, 6(4): 1901382

[53]

LiuY, XiaoH, GoddardW A. Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes [J]. Journal of the American Chemical Society, 2016, 1384915853-15856

[54]

SchultzT, FreyN C, HantanasirisakulK, ParkS, MayS J, ShenoyV B, GogotsiY, KochN. Surface termination dependent work function and electronic properties of Ti3C2TX MXene [J]. Chemistry of Materials, 2019, 31(17): 6590-6597

[55]

YuZ, FengW, LuW, LiB, YaoH, ZengK, OuyangJ. MXenes with tunable work functions and their application as electron- and hole-transport materials in non-fullerene organic solar cells [J]. Journal of Materials Chemistry A, 2019, 7(18): 11160-11169

[56]

CaiP, JiaH, ChenJ, CaoY. Organic/organic cathode bi-interlayers based on a water-soluble nonconjugated polymer and an alcohol-soluble conjugated polymer for high efficiency inverted polymer solar cells [J]. ACS Applied Materials & Interfaces, 2015, 7(50): 27871-27877

[57]

LiuZ, WuY, ZhangQ, GaoX. Non-fullerene small molecule acceptors based on perylene diimides [J]. Journal of Materials Chemistry A, 2016, 4(45): 17604-17622

[58]

CaiP, ChenZ, ZhangL, ChenJ, CaoY. An extended π-conjugated area of electron-donating units in D — A structured polymers towards high-mobility field-effect transistors and highly efficient polymer solar cells [J]. Journal of Materials Chemistry C, 2017, 5(11): 2786-2793

[59]

XueQ, LiuM, LiZ, YanL, HuZ, ZhouJ, LiW, JiangX, XuB, HuangF, LiY, YipH, CaoY. Efficient and stable perovskite solar cells via dual functionalization of dopamine semiquinone radical with improved trap passivation capabilities [J]. Advanced Functional Materials, 2018, 28(18): 1707444

[60]

ZouW, LiR, ZhangS, LiuY, WangN, CaoY, MiaoY, XuM, GuoQ, DiD, ZhangL, YiC, GaoF, FriendR H, WangJ, HuangW. Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes [J]. Nature Communications, 2018, 91608

[61]

LiangA, LiuZ, LiuD, CaiP, WangZ, ZhouW, HuS, TangJ, ZhangX, CaiM. Novel dinuclear cyclometalated platinum(II) complex as orange phosphorescent emitters for single-emitting-layer white polymer light-emitting diodes [J]. Optical Materials, 2019, 88551-557

[62]

SunJ, CaiP, ZhangX, LiangA, ZhangL, ChenJ. Synthesis, characterization and device application of a novel blue-emitting copolymer incorporating fluorene and benzothiazole backbone units [J]. Optical Materials, 2019, 98109443

[63]

CaiP, RenP, HuangX, ZhangX, ZhanT, XiongJ, XueX, WangZ, ZhangJ, ChenJ. An ultraviolet — deposited MoO3 film as anode interlayer for high-performance polymer solar cells [J]. Advanced Materials Interfaces, 2020, 7(6): 1901912

[64]

CaiP, HuangX, ZhanT, ChenG, QiuR, ZhangL, XueX, WangZ, ChenJ. Cross-linkable and alcohol-soluble pyridine-incorporated polyfluorene derivative as a cathode interface layer for high-efficiency and stable organic solar cells [J]. ACS Applied Materials & Interfaces, 2021, 131012296-12304

[65]

LiuZ, ZengD, GaoX, LiP, ZhangQ, PengX. Non-fullerene polymer acceptors based on perylene diimides in all-polymer solar cells [J]. Solar Energy Materials and Solar Cells, 2019, 189103-117

[66]

GaoK, MiaoJ, XiaoL, DengW, KanY, LiangT, WangC, HuangF, PengJ, CaoY, LiuF, RussellT P, WuH, PengX. Multi-length-scale morphologies driven by mixed additives in porphyrin-based organic photovoltaics [J]. Advanced Materials, 2016, 28(23): 4727-4733

[67]

GaoK, JoS B, ShiX, NianL, ZhangM, KanY, LinF, KanB, XuB, RongQ, ShuiL, LiuF, PengX, ZhouG, CaoY, JenA K Y. Over 12% efficiency nonfullerene all-small-molecule organic solar cells with sequentially evolved multilength scale morphologies [J]. Advanced Materials, 2019, 31(12): 1807842

[68]

KanB, KanY, ZuoL, ShiX, GaoK. Recent progress on all — small molecule organic solar cells using small — molecule nonfullerene acceptors [J]. InfoMat, 2020, 32175-200

[69]

WangZ, GaoK, KanY, ZhangM, QiuC, ZhuL, ZhaoZ, PengX, FengW, QianZ, GuX, JenA K Y, TangB, CaoY, ZhangY, LiuF. The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances [J]. Nature Communications, 2021, 12(1): 332

[70]

SunY, LiuT, KanY, GaoK, TangB, LiY. Flexible organic solar cells: Progress and challenges [J]. Small Science, 2021, 152100001

[71]

SinghM, RanaS. Silver and copper nanowire films as cost-effective and robust transparent electrode in energy harvesting through photovoltaic: A review [J]. Materials Today Communications, 2020, 24101317

[72]

AhnS, HanT, MaleskiK, SongJ, KimY, ParkM, ZhouH, YooS, GogotsiY, LeeT. A 2D titanium carbide MXene flexible electrode for high-efficiency light-emitting diodes [J]. Advanced Materials, 2020, 32232000919

[73]

TangH, FengH, WangH, WanX, LiangJ, ChenY. Highly conducting MXene-silver nanowire transparent electrodes for flexible organic solar cells [J]. ACS Applied Materials & Interfaces, 2019, 112825330-25337

[74]

BaiS, GuoX, ChenT, ZhangY, ZhangX, YangH, ZhaoX. Solution processed fabrication of silver nanowire-MXene@PEDOT: PSS flexible transparent electrodes for flexible organic light-emitting diodes [J]. Composites Part A: Applied Science and Manufacturing, 2020, 139106088

[75]

QinL, JiangJ, TaoQ, WangC, PerssonI, FahlmanM, PerssonP O A, HouL, RosenJ, ZhangF. A flexible semitransparent photovoltaic supercapacitor based on water-processed MXene electrodes [J]. Journal of Materials Chemistry A, 2020, 8(11): 5467-5475

[76]

ChangJ, LiuK, LinS, YuanY, ZhouC, YangJ. Solution-processed perovskite solar cells [J]. Journal of Central South University, 2020, 27(4): 1104-1133

[77]

CaoR, ChenY, CaiF, ChenH, LiuW, GuanH, WeiQ, LiJ, ChangQ, LiZ, ZouY. A new chlorinated non-fullerene acceptor based organic photovoltaic cells over 12% efficiency [J]. Journal of Central South University, 2020, 27(12): 3581-3593

[78]

LeeS, KimE H, YuS, KimH, ParkC, ParkT, HanH, LeeS W, BaekS, JinW, KooC M, ParkC. Alternating — current MXene polymer light — emitting diodes [J]. Advanced Functional Materials, 2020, 30(32): 2001224

[79]

LyuB, KimM, JingH, KangJ, QianC, LeeS, ChoJ H. Large-area MXene electrode array for flexible electronics [J]. ACS Nano, 2019, 131011392-11400

[80]

CaoJ, MengF, GaoL, YangS, YanY, WangN, LiuA, LiY, MaT. Alternative electrodes for HTMs and noble-metal-free perovskite solar cells: 2D MXenes electrodes [J]. RSC Advances, 2019, 9(59): 34152-34157

[81]

ChenT, TongG, XuE, LiH, LiP, ZhuZ, TangJ, QiY, JiangY. Accelerating hole extraction by inserting 2D Ti3C2-MXene interlayer to all inorganic perovskite solar cells with long-term stability [J]. Journal of Materials Chemistry A, 2019, 7(36): 20597-20603

[82]

HouC, YuH, HuangC. Solution-processable Ti3C2Tx nanosheets as an efficient hole transport layer for high-performance and stable polymer solar cells [J]. Journal of Materials Chemistry C, 2019, 7(37): 11549-11558

[83]

YangL, Dall’agneseC, Dall’agneseY, ChenG, GaoY, SanehiraY, JenaA K, WangX-F, GogotsiY, MiyasakaT. Surface — modified metallic Ti3C2Tx MXene as electron transport layer for planar heterojunction perovskite solar cells [J]. Advanced Functional Materials, 2019, 29(46): 1905694

[84]

YangL, KanD, Dall’agneseC, Dall’agneseY, WangB, JenaA K, WeiY, ChenG, WangX-F, GogotsiY, MiyasakaT. Performance improvement of MXene-based perovskite solar cells upon property transition from metallic to semiconductive by oxidation of Ti3C2Tx in air [J]. Journal of Materials Chemistry A, 2021, 985016-5025

[85]

WangY, XiangP, RenA, LaiH, ZhangZ, XuanZ, WanZ, ZhangJ, HaoX, WuL, SugiyamaM, SchwingenschlöglU, LiuC, TangZ, WuJ, WangZ, ZhaoD. MXene-modulated electrode/SnO2 interface boosting charge transport in perovskite solar cells [J]. ACS Applied Materials & Interfaces, 2020, 12(48): 53973-53983

[86]

AgrestiA, PazniakA, PescetelliS, DiV A, RossiD, PecchiaA, AufD M M, LiedlA, LarcipreteR, KuznetsovD V, SaraninD, DiC A. Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells [J]. Nature Materials, 2019, 18(11): 1228-1234

[87]

YangL, Dall’agneseY, HantanasirisakulK, ShuckC E, MaleskiK, AlhabebM, ChenG, GaoY, SanehiraY, JenaA K, ShenL, Dall’agneseC, WangX, GogotsiY, MiyasakaT. SnO2-Ti3C2 MXene electron transport layers for perovskite solar cells [J]. Journal of Materials Chemistry A, 2019, 7(10): 5635-5642

[88]

LiZ, WangP, MaC, IgbariF, KangY, WangK, SongW, DongC, LiY, YaoJ, MengD, WangZ, YangY. Single-layered MXene nanosheets doping TiO2 for efficient and stable double perovskite solar cells [J]. Journal of the American Chemical Society, 2021, 143(6): 2593-2600

[89]

ChenX, XuW, DingN, JiY, PanG, ZhuJ, ZhouD, WuY, ChenC, SongH. Dual interfacial modification engineering with 2D MXene quantum dots and copper sulphide nanocrystals enabled high-performance perovskite solar cells [J]. Advanced Functional Materials, 2020, 30(30): 2003295

[90]

HuangL, ZhouX, XueR, XuP, WangS, XuC, ZengW, XiongY, SangH, LiangD. Low-temperature growing anatase TiO2/SnO2 multi-dimensional heterojunctions at MXene conductive network for high-efficient perovskite solar cells [J]. Nano-Micro Letters, 2020, 12144

[91]

LuP, WuJ, ShenX, GaoX, ShiZ, LuM, YuW W, ZhangY. ZnO-Ti3C2 MXene electron transport layer for high external quantum efficiency perovskite nanocrystal light-emitting diodes [J]. Advanced Science, 2020, 7192001562

[92]

HouC, YuH. Modifying the nanostructures of PEDOT: PSS/Ti3C2TX composite hole transport layers for highly efficient polymer solar cells [J]. Journal of Materials Chemistry C, 2020, 8124169-4180

[93]

HouC, YuH. ZnO/Ti3C2Tx monolayer electron transport layers with enhanced conductivity for highly efficient inverted polymer solar cells [J]. Chemical Engineering Journal, 2021, 407DOI

[94]

GuoZ, GaoL, XuZ, TeoS, ZhangC, KamataY, HayaseS, Ting-LiM. High electrical conductivity 2D MXene serves as additive of perovskite for efficient solar cells [J]. Small, 2018, 14(47): 1802738

[95]

GeJ, LiW, HeX, ChenH, FangW, DuX, LiY, ZhaoL. Charge behavior modulation by titanium-carbide quantum dots and nanosheets for efficient perovskite solar cells [J]. Materials Today Energy, 2020, 18100562

[96]

ZhaoY, ZhangX, HanX, HouC, WangH, QiJ, LiY, ZhangQ. Tuning the reactivity of PbI2 film via monolayer Ti3C2Tx MXene for two-step-processed CH3NH3PbI3 solar cells [J]. Chemical Engineering Journal, 2020, 417127912

[97]

JinX, YangL, WangX. Efficient two-dimensional perovskite solar cells realized by incorporation of Ti3C2Tx MXene as nano-dopants [J]. Nano-Micro Letters, 2021, 13168

[98]

SaraninD, PescetelliS, PazniakA, RossiD, LiedlA, YakushevaA, LuchnikovL, PodgornyD, GostischevP, DidenkoS, TameevA, LizzitD, AngelucciM, CiminoR, LarcipreteR, AgrestiA, DiC A. Transition metal carbides (MXenes) for efficient NiO-based inverted perovskite solar cells [J]. Nano Energy, 2021, 82105771

[99]

ZhaoY, LiuX, JingX, WangX, GaoC, DaiS, YuL, SunM. Addition of 2D Ti3C2Tx to enhance photocurrent in diodes for high-efficiency organic solar cells [J]. Solar RRL, 2021, 542100127

[100]

ZhangZ, LiY, LiangC, YuG, ZhaoJ, LuoS, HuangY, SuC, XingG. In situ growth of MAPbBr3 nanocrystals on few-layer MXene nanosheets with efficient energy transfer [J]. Small, 2020, 16171905896

[101]

KamysbayevV, FilatovA S, HuH, RuiX, LagunasF, WangD, KlieR F, TalapinD V. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes [J]. Science, 2020, 3696560979-983

AI Summary AI Mindmap
PDF

192

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/