Wafer bin map inspection based on DenseNet

Nai-gong Yu , Qiao Xu , Hong-lu Wang , Jia Lin

Journal of Central South University ›› 2021, Vol. 28 ›› Issue (8) : 2436 -2450.

PDF
Journal of Central South University ›› 2021, Vol. 28 ›› Issue (8) : 2436 -2450. DOI: 10.1007/s11771-021-4778-7
Article

Wafer bin map inspection based on DenseNet

Author information +
History +
PDF

Abstract

Wafer bin map (WBM) inspection is a critical approach for evaluating the semiconductor manufacturing process. An excellent inspection algorithm can improve the production efficiency and yield. This paper proposes a WBM defect pattern inspection strategy based on the DenseNet deep learning model, the structure and training loss function are improved according to the characteristics of the WBM. In addition, a constrained mean filtering algorithm is proposed to filter the noise grains. In model prediction, an entropy-based Monte Carlo dropout algorithm is employed to quantify the uncertainty of the model decision. The experimental results show that the recognition ability of the improved DenseNet is better than that of traditional algorithms in terms of typical WBM defect patterns. Analyzing the model uncertainty can not only effectively reduce the miss or false detection rate but also help to identify new patterns.

Keywords

wafer defect inspection / convolutional neural network / DenseNet / model uncertainty

Cite this article

Download citation ▾
Nai-gong Yu, Qiao Xu, Hong-lu Wang, Jia Lin. Wafer bin map inspection based on DenseNet. Journal of Central South University, 2021, 28(8): 2436-2450 DOI:10.1007/s11771-021-4778-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BergeretF, Le GallC. Yield improvement using statistical analysis of process dates [J]. IEEE Transactions on Semiconductor Manufacturing, 2003, 16(3): 535-542

[2]

HsuS C, ChienC F. Hybrid data mining approach for pattern extraction from wafer Bin map to improve yield in semiconductor manufacturing [J]. International Journal of Production Economics, 2007, 107(1): 88-103

[3]

ChenF-L, LiuS-F. A neural-network approach to recognize defect spatial pattern in semiconductor fabrication [J]. IEEE Transactions on Semiconductor Manufacturing, 2000, 13(3): 366-373

[4]

WangC H, KuoW, BensmailH. Detection and classification of defect patterns on semiconductor wafers [J]. IIE Transactions, 2006, 38(12): 1059-1068

[5]

HwangJ Y, KuoW. Model-based clustering for integrated circuit yield enhancement [J]. European Journal of Operational Research, 2007, 178(1): 143-153

[6]

YuJ-B, LuX-L. Wafer map defect detection and recognition using joint local and nonlocal linear discriminant analysis [J]. IEEE Transactions on Semiconductor Manufacturing, 2016, 29(1): 33-43

[7]

JinC-H, NaH J, PiaoM-H, PokG, RyuK H. A novel DBSCAN-based defect pattern detection and classification framework for wafer Bin map [J]. IEEE Transactions on Semiconductor Manufacturing, 2019, 32(3): 286-292

[8]

ChenX-Y, ZhaoC-D, ChenJ-Y, ZhangD-Y, ZhuK-F, SuY-J. K-means clustering with morphological filtering for silicon wafer grain defect detection [C]. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 2020, Chongqing, China, IEEE, 12511255

[9]

LeeS, KimD. Distributed-based hierarchical clustering system for large-scale semiconductor wafers [C]. 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 2018, Bangkok, Thailand, IEEE, 15281532

[10]

ChienC-F, HsuS C, ChenY J. A system for online detection and classification of wafer Bin map defect patterns for manufacturing intelligence [J]. International Journal of Production Research, 2013, 51(8): 2324-2338

[11]

TahaK, SalahK, YooP D. Clustering the dominant defective patterns in semiconductor wafer maps [J]. IEEE Transactions on Semiconductor Manufacturing, 2018, 31(1): 156-165

[12]

KongY-T, NiD. Semi-supervised classification of wafer map based on ladder network [C]. 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2018, Piscataway, NJ, USA, IEEE, 14

[13]

ShimJ, KangS, ChoS. Active learning of convolutional neural network for cost-effective wafer map pattern classification [J]. IEEE Transactions on Semiconductor Manufacturing, 2020, 33(2): 258-266

[14]

PiaoM-H, JinC-H, LeeJ Y, ByunJ Y. Decision tree ensemble-based wafer map failure pattern recognition based on radon transform-based features [J]. IEEE Transactions on Semiconductor Manufacturing, 2018, 31(2): 250-257

[15]

SaqlainM, JargalsaikhanB, LeeJ Y. A voting ensemble classifier for wafer map defect patterns identification in semiconductor manufacturing [J]. IEEE Transactions on Semiconductor Manufacturing, 2019, 32(2): 171-182

[16]

WuM-J, JangJ S R, ChenJ L. Wafer map failure pattern recognition and similarity ranking for large-scale data sets [J]. IEEE Transactions on Semiconductor Manufacturing, 2015, 28(1): 1-12

[17]

AdlyF, YooP D, MuhaidatS, Al-HammadiY, LeeU, IsmailM. Randomized general regression network for identification of defect patterns in semiconductor wafer maps [J]. IEEE Transactions on Semiconductor Manufacturing, 2015, 28(2): 145-152

[18]

LiZ-M, GuiW-H, ZhuJ-Y. Fault detection in flotation processes based on deep learning and support vector machine [J]. Journal of Central South University, 2019, 26(9): 2504-2515

[19]

NakazawaT, KulkarniD V. Wafer map defect pattern classification and image retrieval using convolutional neural network [J]. IEEE Transactions on Semiconductor Manufacturing, 2018, 31(2): 309-314

[20]

NakazawaT, KulkarniD V. Anomaly detection and segmentation for wafer defect patterns using deep convolutional encoder-decoder neural network architectures in semiconductor manufacturing [J]. IEEE Transactions on Semiconductor Manufacturing, 2019, 32(2): 250-256

[21]

DevikaB, GeorgeN. Convolutional neural network for semiconductor wafer defect detection [C]. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2019, Kanpur, India, IEEE, 16

[22]

ShenZ-L, YuJ-B. Wafer map defect recognition based on deep transfer learning [C]. 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 2019, Macao, China, IEEE, 15681572

[23]

WangR, ChenN. Defect pattern recognition on wafers using convolutional neural networks [J]. Quality and Reliability Engineering International, 2020, 36(4): 1245-1257

[24]

SaqlainM, AbbasQ, LeeJ Y. A deep convolutional neural network for wafer defect identification on an imbalanced dataset in semiconductor manufacturing processes [J]. IEEE Transactions on Semiconductor Manufacturing, 2020, 33(3): 436-444

[25]

MaksimK, KirillB, EduardZ, NikitaG, AleksandrB, ArinaL, VladislavS, DaniilM, NikolayK. Classification of wafer maps defect based on deep learning methods with small amount of data [C]. 2019 International Conference on Engineering and Telecommunication (EnT), 2019, Dolgoprudny: Russia., IEEE, 15

[26]

CheonS, LeeH, KimC O, LeeS H. Convolutional neural network for wafer surface defect classification and the detection of unknown defect class [J]. IEEE Transactions on Semiconductor Manufacturing, 2019, 32(2): 163-170

[27]

SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [C]// 3rd International Conference on Learning Representations. San Diego, CA, United States, 2014. https://arxiv.org/abs/1409.1556.

[28]

HeK-M, ZhangX-Y, RenS-Q, SunJ. Deep residual learning for image recognition [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, Las Vegas, NV, USA, IEEE, 770778

[29]

HuangG, LiuZ, Van Der MaatenL, WeinbergerK Q. Densely connected convolutional networks [C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, Honolulu, HI, USA, IEEE, 22612269

[30]

MahmoodA, TangX-W, QiuJ-N, GuW-J, FeezanA. A hybrid approach for evaluating CPT-based seismic soil liquefaction potential using Bayesian belief networks [J]. Journal of Central South University, 2020, 27(2): 500-516

[31]

BISHOP C M. Bayesian neural networks [J]. Journal of the Brazilian Computer Society, 1997, 4(1). DOI: https://doi.org/10.1590/s0104-65001997000200006.

[32]

MackayD J C. A practical Bayesian framework for backpropagation networks [J]. Neural Computation, 1992, 4(3): 448-472

[33]

BhatP C, ProsperH B. Bayesian neural networks [C]. Statistical Problems in Particle Physics, Astrophysics and Cosmology, 2006, Oxford, UK, Imperial College Press

[34]

HERNÁNDEZ-LOBATO J M, ADAMS R P. Probabilistic backpropagation for scalable learning of Bayesian neural networks [EB/OL] 2015: arXiv: 1502.05336.http//arxiv.org/abs/1502.05336.

[35]

SHRIDHAR K, LAUMANN F, MAURIN A L, OLSEN M, LIWICKI M. Bayesian convolutional neural networks with variational inference [EB/OL]. 2018: arXiv: 1806.05978. https://arxiv.org/abs/1806.05978.

[36]

BLUNDELL C, CORNEBISE J, KAVUKCUOGLU K, WIERSTRA D. Weight uncertainty in neural networks [C]// 32nd International Conference on Machine Learning. Lile, France. 2015. https://arxiv.org/abs/1505.05424.

[37]

GAL Y, GHAHRAMANI Z. Bayesian convolutional neural networks with bernoulli approximate variational inference [EB/OL]. 2015: arxiv:1506.02158. http://arxiv.org/abs/1506.02158.

[38]

ALEX G. Practical variational inference for neural networks [C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. Granada, Spain, 2011. DOI: https://doi.org/10.5555/2986459.2986721.

[39]

GAL Y, GHAHRAMANI Z. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning [EB/OL]. 2015; arxiv: 1506.02142v4. http://arxiv.org/abs/1506.02142v4.

[40]

MiokK. Estimation of prediction intervals in neural network-based regression models [C]. 2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2018, Timisoara, Romania, IEEE, 463468

[41]

GhoshalB, TuckerA, SangheraB, WongW L. Estimating uncertainty in deep learning for reporting confidence to clinicians when segmenting nuclei image data [C]. 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS). June 5–7, 2019, 2019, Cordoba, Spain, IEEE, 318324

[42]

LütjensB, EverettM, HowJ P. Safe reinforcement learning with model uncertainty estimates [C]. 2019 International Conference on Robotics and Automation (ICRA). May 20–24, 2019, 2019, Montreal, QC, Canada, IEEE, 86628668

[43]

LinT Y, GoyalP, GirshickR, HeK M, DollarP. Focal loss for dense object detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327

[44]

SrivastavaN, HintonG, KrizhevskyA, SutskeverI, SalakhutdinovR. Dropout: A simple way to prevent neural networks from overfitting [J]. Journal of Machine Learning Research, 2014, 15(56): 1929-1958

[45]

LiuFWafer defects issue study in lithography [D], 2012, Tianjin, Tianjin University(in Chinese)

AI Summary AI Mindmap
PDF

274

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/