Quantitative analysis on microstructure and high temperature fracture mechanism of 2.6vol%TiBw/Ti6Al4V composites with equiaxed microstructure after heat treatment
Jin-qi Pan , Wen-cong Zhang , Jian-lei Yang , Wen-zhen Chen , Guo-rong Cui
Journal of Central South University ›› 2021, Vol. 28 ›› Issue (8) : 2307 -2319.
Quantitative analysis on microstructure and high temperature fracture mechanism of 2.6vol%TiBw/Ti6Al4V composites with equiaxed microstructure after heat treatment
In this paper, the 2.6vol%TiBw/Ti6Al4V composites with network architecture were fabricated by hot press sintering (HPS) at 1100 °C for 1 h, and the quantitative relationships between phases and heat treatment temperatures were established. The results showed that the volume fraction phases changed linearly with a range of solution temperature (930–1010 °C) and aging temperature (400–600 °C). Moreover, the composites with equiaxed microstructure were obtained due to the static recrystallization after solution treated at 950 °C for 1 h and aging treated at 600 °C for 12 h. The ultimate high temperature tensile strengths were 772, 658, 392 and 182 MPa, and the elongations were 9.1%, 12.5%, 28.6% and 35.3% at 400, 500, 600 and 700 °C, respectively. In addition, fractured morphology analysis indicated the excellent strengthening effect of TiBw at a temperature below 600 °C. However, the strengthening effect was significantly reduced due to the debonding of matrix and TiBw at 700 °C and caused the cracks to propagate along the grain boundary.
titanium matrix composites (TMCs) / heat treatment / mechanical properties / microstructure evolution
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
/
| 〈 |
|
〉 |