A new low-bandgap polymer acceptor based on benzotriazole for efficient all-polymer solar cells

Zhe Li , Hong-gang Chen , Jun Yuan , Jie Zou , Jing Li , Hui-lan Guan , Ying-ping Zou

Journal of Central South University ›› 2021, Vol. 28 ›› Issue (7) : 1919 -1931.

PDF
Journal of Central South University ›› 2021, Vol. 28 ›› Issue (7) : 1919 -1931. DOI: 10.1007/s11771-021-4741-7
Article

A new low-bandgap polymer acceptor based on benzotriazole for efficient all-polymer solar cells

Author information +
History +
PDF

Abstract

The rational design of polymer acceptors with strong and broad absorption is critical to improve photovoltaic performance. In this work, a new polymer acceptor PY9-T based on heptacyclic benzotriazole (Y9-C16) as a building block and thiophene unit as the linking unit was synthesized, which exhibited a low bandgap (1.37 eV) and a high extinction coefficient of the neat film (1.44×105 cm−1). When PY9-T was blended with the wide bandgap polymer donor PBDB-T, the all-polymer solar cells (APSCs) showed a high power conversion efficiency (PCE) of 10.45% with both high open circuit voltage of 0.881 V and short-circuit current density of 19.82 mA/cm2. In addition, APSCs based on PY9-T show good thermal stability, as evidenced by slight changes morphologies when annealed at 100 °C. These results suggest that Y9-C16 provides a new building block to develop efficient and stable polymer acceptors.

Keywords

all-polymer solar cells / polymer acceptor / low-bandgap / benzotriazole / power conversion efficiency

Cite this article

Download citation ▾
Zhe Li, Hong-gang Chen, Jun Yuan, Jie Zou, Jing Li, Hui-lan Guan, Ying-ping Zou. A new low-bandgap polymer acceptor based on benzotriazole for efficient all-polymer solar cells. Journal of Central South University, 2021, 28(7): 1919-1931 DOI:10.1007/s11771-021-4741-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YuG, GaoJ, HummelenJ C, WudiF, HeegerA J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions [J]. Science, 1995, 270(5243): 1789-1791

[2]

HallsJ J M, PichlerK, FriendR H, MorattiS C, HolmesA B. Exciton dissociation at a poly (p-phenylenevinylene)/CeO heterojunction [J]. Synthetic Metals, 1996, 77(1–3): 277-280

[3]

LiY-F, ZouY-P. Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility [J]. Advanced Materials, 2008, 20(15): 2952-2958

[4]

LiC, LiuM-Y, PschirerN G, BaumgartenM, MüllenK. Polyphenylene-based materials for organic photovoltaics [J]. Chemical Reviews, 2010, 110(11): 6817-6856

[5]

ZhangZ-G, YangY-K, YaoJ, XueL-W, ChenS-S, LiX-J, MorrisonW, YangC-D, LiY-F. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance allpolymer solar cells [J]. Angewandte Chemie International Edition, 2017, 56: 13503-13507

[6]

ZhangZ-G, LiY-F. Polymerized small molecule acceptors for high performance all-polymer solar cells [J]. Angewandte Chemie International Edition, 2020, 60(9): 2-14

[7]

WangG, MelkonyanF S, FacchettiA, MarksT J. All-polymer solar cells: Recent progress, challenges, and prospects [J]. Angewandte Chemie International Edition, 2019, 58(13): 4129-4142

[8]

DuanC-H, DingL-M. The new era for organic solar cells: Polymer donors [J]. Science Bulletin, 2020, 65(17): 1422-1424

[9]

LiZ-J, XuX-F, ZhangW, MengX-Y, MaW, YartsevA, InganäsO, AnderssonM R, JanssenR A J, WangE-G. High performance allpolymer solar cells by synergistic effects of fine-tuned crystallinity and solvent annealing [J]. Journal of the American Chemical Society, 2016, 138(34): 10935-10944

[10]

ZhouL-Y, HeX, LauT K, QiuB-B, WangT, LuX-H, LuszczynskaB, UlanskiJ, XuS-T, ChenG-H, YuanJ, ZhangZ-G, LiY-F, ZouY-P. Nonhalogenated solvent-processed all-polymer solar cells over 7.4% efficiency from quinoxaline-based polymers [J]. ACS Applied Materials & Interfaces, 2018, 10(48): 41318-41325

[11]

YangJ, XiaoB, TangA-L, LiJ-F, WangX-C, ZhouE-J. Aromatic-diimide-based n-type conjugated polymers for all-polymer solar cell applications [J]. Advanced Materials, 2019, 31(45): 1804699

[12]

WuJ-N, MengY, GuoX, ZhuL, LiuF, ZhangM-J. All-polymer solar cells based on a novel narrow-bandgap polymer acceptor with power conversion efficiency over 10% [J]. Journal of Materials Chemistry A, 2019, 72716190-16196

[13]

YaoH-T, BaiF-J, HuH-W, ArunagiriL, ZhangJ-Q, ChenY-Z, YuH, ChenS-S, LiuT, LaiJ Y L, ZouY-P, AdeH, YanH. Efficient all-polymer solar cells based on a new polymer acceptor achieving 10.3% power conversion efficiency [J]. ACS Energy Letters, 2019, 4(2): 417-422

[14]

FanQ-P, AnQ-S, LinY-B, XiaY-X, LiQ, ZhangM, SuW-Y, PengW-H, ZhangC-F, LiuF, HouL-T, ZhuW-G, YuD-H, XiaoM, MoonsE, ZhangF-J, AnthopoulosT D, InganäsO, WangE-G. Over 14% efficiency all-polymer solar cells enabled by a low bandgap polymer acceptor with low energy loss and efficient charge separation [J]. Energy & Environmental Science, 2020, 13(12): 5017-5027

[15]

SunH-L, YuH, ShiY-Q, YuJ-W, PengZ-X, ZhangX-H, LiuB, WangJ, SinghR, LeeJ, LiY-C, WeiZ-X, LiaoQ-G, KanZ-P, YeL, YanH, GaoF, GuoX-G. A narrow-bandgap n-type polymer with an acceptor-acceptor backbone enabling efficient all-polymer solar cells [J]. Advanced Materials, 2020, 32(43): 2004183

[16]

YuanJ, ZhangY-Q, ZhouL-Y, ZhangG-C, YipH L, LauT K, LuX-H, ZhuC, PengH-J, JohnsonP A, LeclercM, CaoY, UlanskiJ, LiY-F, ZouY-P. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core [J]. Joule, 2019, 341140-1151

[17]

FengL-L, YuanJ, ZhangZ-Z, PengH-J, ZhangZ-G, XuS-T, LiuY, LiY-F, ZouY-P. Thieno[3,2-b]pyrrolo-fused pentacyclic benzotriazole-based acceptor for efficient organic photovoltaics [J]. ACS Applied Materials & Interfaces, 2017, 9(37): 31985-31992

[18]

LiuS, YuanJ, DengW-Y, LuoM, XieY, LiangQ-B, ZouY-P, HeZ-C, WuH, CaoY. High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder [J]. Nature Photonics, 2020, 14(5): 300-305

[19]

YuanJ, ZhangY-Q, ZhouL-Y, ZhangC-J, LauT K, ZhangG-C, LuX-H, YipH L, SoS K, BeaupreS, MainvilleM, JohnsonP A, LeclercM, ChenH-G, PengH-J, LiY-F, ZouY-P. Fused Benzothiadiazole: A building block for n-type organic acceptor to achieve highperformance organic solar cells [J]. Advanced Materials, 2019, 31(17): 1807577

[20]

JiangK, WeiQ-Y, LaiJ Y L, PengZ-X, KimH K, YuanJ, YeL, AdeH, ZouY-P, YanH. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells [J]. Joule, 2019, 3123020-3033

[21]

WeiQ-Y, LiuW, LeclercM, YuanJ, ChenH-G, ZouY-P. A-DA’D-A non-fullerene acceptors for high-performance organic solar cells [J]. Science China Chemistry, 2020, 63(10): 1352-1366

[22]

CaoR, ChenY, CaiF-F, ChenH-G, LiuW, GuanH-L, WeiQ-Y, LiJ, ChangQ, LiZ, ZouY-P. A new chlorinated non-fullerene acceptor based organic photovoltaic cells over 12% efficiency [J]. Journal of Central South University, 2020, 27(12): 3581-3593

[23]

JiaT, ZhangJ-B, ZhongW-K, LiangY, ZhangK, DongS, YingL, LiuF, WangX-H, HuangF, CaoY. 14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor [J]. Nano Energy, 2020, 72: 104718

[24]

LuoM, ZhouL-Y, YuanJ, ZhuC, CaiF-F, HaiJ-F, ZouY-P. A new nonfullerene acceptor based on the heptacyclic benzotriazole unit for efficient organic solar cells [J]. Journal of Energy Chemistry, 2020, 42169-173

[25]

YuanJ, ZhangH-T, ZhangR, WangY-M, HouJ-H, LeclercM, ZhanX-W, HuangF, GaoF, ZouY-P. Reducing voltage losses in the A-DA’D-A acceptor-based organic solar cells [J]. Chem, 2020, 6(9): 2147-2161

[26]

ZhouH-X, YangL-Q, YouW. Rational design of high performance conjugated polymers for organic solar cells [J]. Macromolecules, 2012, 45(2): 607-632

[27]

LuL-Y, ZhengT-Y, WuQ-H, SchneiderA M, ZhaoD-L, YuL-P. Recent advances in bulk heterojunction polymer solar cells [J]. Chemical Reviews, 2015, 115(23): 12666-12731

[28]

YuanJ, HuangT-Y, ChengP, ZouY-P, ZhangH-T, YangJ L, ChangS-Y, ZhangZ-Z, HuangW-C, WangR, MengD, GaoF, YangY. Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics [J]. Nat Commun, 2019, 10: 570

[29]

ProctorC M, KimC, NeherD, NguyenT Q. Nongeminate recombination and charge transport limitations in diketopyrrolopyrrole-based solution-processed small molecule solar cells [J]. Advanced Functional Materials, 2013, 23(28): 3584-3594

[30]

ChenX-B, XuG-Y, ZengG, GuH-W, ChenH-Y, XuH-T, YaoH-F, LiY-W, HouJ-H, LiY-F. Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a “welding” flexible transparent electrode [J]. Advanced Materials, 2020, 32(14): 1908478

[31]

MihailetchiV D, WildemanJ, BlomP W. Space-charge limited photocurrent [J]. Physical Review Letters, 2005, 9412126602

[32]

BlomP W M, JongM J M D, MunsterM G V. Electric-field and temperature dependence of the hole mobility in poly (p-phenylene vinylene) [J]. Physical Review B, 1997, 55656-659

[33]

MalliarasG G, SalemJ R, BrockP J, ScottC. Electrical characteristics and efficiency of single-layer organic light-emitting diodes [J]. Physical Review B, 1998, 5813411-13414

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/