Mechanical properties of polyvinyl alcohol-basalt hybrid fiber engineered cementitious composites with impact of elevated temperatures

Zhen-bo Wang , Shuo Han , Peng Sun , Wei-kang Liu , Qing Wang

Journal of Central South University ›› 2021, Vol. 28 ›› Issue (5) : 1459 -1475.

PDF
Journal of Central South University ›› 2021, Vol. 28 ›› Issue (5) : 1459 -1475. DOI: 10.1007/s11771-021-4710-1
Article

Mechanical properties of polyvinyl alcohol-basalt hybrid fiber engineered cementitious composites with impact of elevated temperatures

Author information +
History +
PDF

Abstract

In the present study, the mechanical properties of polyvinyl alcohol (PVA)-basalt hybrid fiber reinforced engineered cementitious composites (ECC) after exposure to elevated temperatures were experimentally investigated. Five temperatures of 20, 50, 100, 200 and 400 °C were set to evaluate the residual compressive, tensile and flexural behaviors of hybrid and mono fiber ECC. It was shown that partial replacement of PVA fibers with basalt fibers endowed ECC with improved residual compressive toughness, compared to brittle failure of mono fiber ECC heated to 400 °C. The tension tests indicated that the presence of basalt fibers benefited the tensile strength up to 200 °C, and delayed the sharp reduction of strength to 400 °C. Under flexural load, the peak deflections corresponding to flexural strengths of hybrid fiber ECC were found to be less vulnerable ranging from 20 to 100 °C. Further, the scanning electron microscopy (SEM) results uncovered that the rupture of basalt fiber at moderate temperature and its pullout mechanism at high temperature was responsible for the mechanical evolution of hybrid fiber ECC. This work develops a better understanding of elevated temperature and basalt fiber impact on the residual mechanical properties and further provides guideline for tailoring ECC for improved fire resistance.

Keywords

engineered cementitious composites / hybrid fiber / basalt fiber / mechanical properties / elevated temperature

Cite this article

Download citation ▾
Zhen-bo Wang, Shuo Han, Peng Sun, Wei-kang Liu, Qing Wang. Mechanical properties of polyvinyl alcohol-basalt hybrid fiber engineered cementitious composites with impact of elevated temperatures. Journal of Central South University, 2021, 28(5): 1459-1475 DOI:10.1007/s11771-021-4710-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiV C. From micromechanics to structure engineering-the design of cementitious composites for civil engineering application [J]. JSCE Journal of Structure Mechanics and Earthquake Engineering, 1993, 10(2): 37-48

[2]

LepechM D, LiV C. Water permeability of engineered cementitious composites [J]. Cement and Concrete Composites, 2009, 31(10): 744-753

[3]

YangE H, LiV C. Tailoring engineered cementitious composites for impact resistance [J]. Cement and Concrete Research, 2012, 42(8): 1066-1071

[4]

FischerG, LiV C. Effect of matrix ductility on deformation behavior of steel-reinforced ECC flexural members under reversed cyclic loading conditions [J]. ACI Structural Journal, 2002, 99(6): 781-790

[5]

SahmaranM, LiV C. Durability properties of microcracked ECC containing high volumes fly ash [J]. Cement and Concrete Research, 2009, 39(11): 1033-1043

[6]

ZhangJ, GongC-x, GuoZ-l, ZhangM. Engineered cementitious composite with characteristic of low drying shrinkage [J]. Cement and Concrete Research, 2009, 39(4): 303-312

[7]

ZhangJ, GongC-x, GuoZ-l, JuX-chun. Mechanical performance of low shrinkage engineered cementitious composite in tension and compression [J]. Journal of Composite Materials, 2009, 43(22): 2571-2585

[8]

WangZ-b, ZhangJ, WangJ-h, ShiZ-jie. Tensile performance of polyvinyl alcohol-steel hybrid fiber reinforced cementitious composite with impact of water to binder ratio [J]. Journal of Composite Materials, 2015, 49(18): 2169-2186

[9]

WangZ-b, ZuoJ-p, ZhangX-y, JiangG-h, FengL-lu. Stress-strain behaviour of hybrid-fibre engineered cementitious composite in compression [J]. Advances in Cement Research, 2020, 32(2): 53-65

[10]

ZhangJ, WangZ-b, WangQ, GaoY. Simulation and test of flexural performance of polyvinyl alcohol-steel hybrid fiber reinforced cementitious composite [J]. Journal of Composite Materials, 2016, 50(30): 4291-4305

[11]

WangZ-b, LiuC, ZuoJ-p, ZhangZ, HanY-d, ManS-han. Monitoring and modeling the damage evolution in engineered cementitious composites subjected to sulfate attack through continuous ultrasonic measurements [J]. Construction and Building Materials, 2020, 262: 120799

[12]

HeR, ChenS-f, SunW-j, GongR. Deformation behavior of high performance fiber reinforced cementitious composite prepared with asphalt emulsion [J]. Journal of Central South University, 2014, 21(2): 811-816

[13]

QianS, LepechM D, KimY Y, LiV C. Introduction of transition zone design for bridge deck link slabs using ductile concrete [J]. ACI Structural Journal, 2009, 106(1): 96-105

[14]

MaalejM, QuekS T, ZhangJ. Behavior of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact [J]. ASCE Journal of Materials in Civil Engineering, 2005, 17(2): 143-152

[15]

ZhangJ, WangZ-b, JuX-chun. Application of ductile fiber reinforced cementitious composite in jointless concrete pavements [J]. Composites Part B: Engineering, 2013, 50224-231

[16]

WangZ-b, SunP, ZuoJ-p, LiuC, HanY-d, ZhangZ-shan. Long-term properties and microstructure change of engineered cementitious composites subjected to high sulfate coal mine water in drying-wetting cycles [J]. Materials & Design, 2021, 203: 109610

[17]

FanJ-s, ShiZ-j, GouS-k, NieX, ZhangJ, WangZ-bo. Experimental research on negative bending behavior of steel-ECC composite beams [J]. China Civil Engineering Journal, 2017, 50(4): 64-72(in Chinese)

[18]

SivaC R, PankajA. Flexural behavior of reinforced concrete beams with high performance fiber reinforced cementitious composites [J]. Journal of Central South University, 2019, 262609-2622

[19]

SahmaranM, LachemiM, LiV C. Assessing mechanical properties and microstructure of fire-damaged engineered cementitious composites [J]. ACI Materials Journal, 2010, 107(3): 279-304

[20]

SahmaranM, ÖzbayE, YücelH E, LachemiM, LiV C. Effect of fly ash and PVA fiber on microstructural damage and residual properties of engineered cementitious composites exposed to high temperatures [J]. ASCE Journal of Materials in Civil Engineering, 2011, 23(12): 1735-1745

[21]

YuJ T, LinJ H, ZhangZ G, LiV C. Mechanical performance of ECC with high-volume fly ash after subelevated temperatures [J]. Construction and Building Materials, 2015, 99: 82-89

[22]

YuK Q, LuZ D, YuJ T. Residual compressive properties of strain-hardening cementitious composite with different curing ages exposed to high temperature [J]. Construction and Building Materials, 2015, 98: 146-155

[23]

MechtcherineV, AndradeS F, MüllerS, JunP, FilhoR D T. Coupled strain rate and temperature effects on the tensile behavior of strain-hardening cement-based composites (SHCC) with PVA fibers [J]. Cement and Concrete Research, 2012, 42(11): 1417-1427

[24]

BhatP S, ChangV, LiM. Effect of elevated temperature on strain-hardening engineered cementitious composites [J]. Construction and Building Materials, 2014, 69: 370-380

[25]

MaalejM, QuekS, ZhangJ. Behavior of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact [J]. ASCE Journal of Materials in Civil Engineering, 2005, 17: 143-152

[26]

ParkS H, KimJ D, RyuG S, KohK T. Tensile behavior of ultra high performance hybrid fiber reinforced concrete [J]. Cement and Concrete Composites, 2012, 34: 172-184

[27]

BanthiaN, MajdzadehF, WuJ, BindiganavileV. Fiber synergy in hybrid fiber reinforced concrete (HyFRC) in flexure and direct shear [J]. Cement and Concrete Composites, 2014, 48: 91-97

[28]

MaalejM, QuekS T, AhmedS F U, ZhangJ, LinV W J, LeongK S. Review of potential structural applications of hybrid fiber engineered cementitious composites [J]. Construction and Building Materials, 2012, 36: 216-227

[29]

PakravanH R, JamshidiM. Tensile properties of strainhardening cementitious composites containing polyvinylalcohol fibers hybridized with polypropylene fibers [J]. Journal of Central South University, 2018, 25(1): 51-59

[30]

LiuJ C, TanK H. Fire resistance of strain hardening cementitious composite with hybrid PVA and steel fibers [J]. Construction and Building Materials, 2017, 135: 600-611

[31]

LiuJ C, TanK H, ZhangD. Multi-response optimization of post-fire performance of strain hardening cementitious composite [J]. Cement and Concrete Composites, 2017, 80: 80-90

[32]

PourfalahS. Behaviour of engineered cementitious composites and hybrid engineered cementitious composites at high temperatures [J]. Construction and Building Materials, 2018, 158: 921-937

[33]

ZhangD, YuJ, WuH L, JaworskaB, EllisB R, LiV C. Discontinuous micro-fibers as intrinsic reinforcement for ductile engineered cementitious composites (ECC) [J]. Composites Part B: Engineering, 2020, 184: 107741

[34]

PromodaB, VijayB, JiriM, PetrL. Elevated temperature properties of basalt microfibril filled geopolymer composites [J]. Construction and Building Materials, 2018, 163850-860

[35]

FioreV, ScaliciT, DiB G. A review on basalt fibre and its composites [J]. Composites Part B: Engineering, 2015, 74: 74-94

[36]

DhandV, MittalG, RheeK Y, ParkS J, HuiD. A short review on basalt fiber reinforced polymer composites [J]. Composites Part B: Engineering, 2015, 73: 166-180

[37]

WangQ S, YiY, MaG W, LuoH. Hybrid effects of steel fibers, basalt fibers and calcium sulfate on mechanical performance of PVA-ECC containing high-volume fly ash [J]. Cement and Concrete Composites, 2019, 97: 357-368

[38]

LohZ P, MoK H, TanC G, YeoS H. Mechanical characteristics and flexural behaviour of fibre-reinforced cementitious composite containing PVA and basalt fibres [J]. Sadhana, 2019, 44(4): 98-106

[39]

ZhaoH-t, JiangK-d, YangR, TangY-m, LiuJ-ping. Experimental and theoretical analysis on coupled effect of hydration, temperature and humidity in early-age cement-based materials [J]. International Journal of Heat and Mass Transfer, 2020, 146: 118784

[40]

WangQ, ZhangJ, HoJ C M. Zeolite to improve strength-shrinkage performance of high-strength engineered cementitious composite [J]. Construction and Building Materials, 2020, 234117335

[41]

WangZ-b, ZhangJ. Field applications of low shrinkage engineered cementitious composites in China [J]. Indian Concrete Journal, 2020, 269-74

[42]

RokugoK, KandaT, YokotaH, SakataN. Applications and recommendations of high performance fiber reinforced cement composites with multiple fine cracking (HPFRCC) in Japan [J]. Materials & Structures, 2009, 42(9): 1197-1208

[43]

LuoJ-j, CaiZ-w, YuK-q, ZhuW-j, LuZ-dao. Temperature impact on the micro-structures and mechanical properties of high-strength engineered cementitious composites [J]. Construction and Building Materials, 2019, 226: 686-698

[44]

WuC, LiV C. Thermal-mechanical behaviors of CFRP-ECC hybrid under elevated temperatures [J]. Composites Part B: Engineering, 2017, 110: 255-266

[45]

ChoiJ, LeeB Y. Bonding properties of basalt fiber and strength reduction according to fiber orientation [J]. Materials, 2015, 8: 6719-6727

[46]

LeungC K Y. Design criteria for pseudo-ductile fiberreinforced composites [J]. ASCE Journal of Engineering Mechanics, 1996, 122(1): 10-18

[47]

WilleK, El-TawilS, NaamanA E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading [J]. Cement and Concrete Composites, 2014, 43: 58-66

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/