Microstructural evolution and mechanical properties of an ultrahigh-strength Al−Zn−Mg−Cu alloy via powder metallurgy and hot extrusion

Cun-guang Chen , Wei-hao Han , Miao Qi , Shi-peng Dong , Pei Li , Fang Yang , Jun-jie Hao , Zhi-meng Guo

Journal of Central South University ›› 2021, Vol. 28 ›› Issue (4) : 1195 -1205.

PDF
Journal of Central South University ›› 2021, Vol. 28 ›› Issue (4) : 1195 -1205. DOI: 10.1007/s11771-021-4669-y
Article

Microstructural evolution and mechanical properties of an ultrahigh-strength Al−Zn−Mg−Cu alloy via powder metallurgy and hot extrusion

Author information +
History +
PDF

Abstract

In this work, a novel ultrahigh-strength Al−10Zn−3.5Mg−1.5Cu alloy was fabricated by powder metallurgy followed by hot extrusion. Investigations on microstructural evolution and mechanical properties of the fabricated samples were carried out. The results show that the grain size of sintered samples matches with the powder particles after ball milling. The relative densities of sintered and hot extruded samples reach 99.1% and 100%, respectively. Owing to the comprehensive mechanism of grain refinement, aging and dispersion strengthening, the ultimate tensile strength, yield strength and elongation of the Al−10Zn−3.5Mg−1.5Cu alloy after hot extrusion and subsequent heat treatment achieve 810 MPa, 770 MPa and 8%, respectively.

Keywords

powder metallurgy / Al−Zn−Mg−Cu alloy / ultrahigh strength / hot extrusion

Cite this article

Download citation ▾
Cun-guang Chen, Wei-hao Han, Miao Qi, Shi-peng Dong, Pei Li, Fang Yang, Jun-jie Hao, Zhi-meng Guo. Microstructural evolution and mechanical properties of an ultrahigh-strength Al−Zn−Mg−Cu alloy via powder metallurgy and hot extrusion. Journal of Central South University, 2021, 28(4): 1195-1205 DOI:10.1007/s11771-021-4669-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiuJ, ChengY-s, ChanS W N, SungD. Microstructure and mechanical properties of 7075 aluminum alloy during complex thixoextrusion [J]. Transactions of Nonferrous Metals Society of China, 2020, 30(12): 3173-3182

[2]

ZhangT, ZhangS-h, LiL, LuS-h, GongH. Modified constitutive model and workability of 7055 aluminium alloy in hot plastic compression [J]. Journal of Central South University, 2019, 26: 2930-2942

[3]

MoonC, ThuillierS, LeeJ, LeeM G. Mechanical properties of solution heat treated Al−Zn−Mg−Cu (7075) alloy under different cooling conditions: Analysis with full field measurement and finite element modeling [J]. Journal of Alloys and Compounds, 2021, 856: 158180

[4]

WANG Yi-chang, WU Xiao-dong, CAO Ling-fei, TONG Xin. Effect of Ag on aging precipitation behavior and mechanical properties of aluminum alloy 7075 [J]. Materials Science and Engineering A, 2020: 140515. DOI: https://doi.org/10.1016/j.msea.2020.140515.

[5]

ZouH, PanQ-l, ShiY-j, ChenJ, XiangH, LiR-s, LiH. Effect of ultrasonic field on microstructure and mechanical properties of as-cast 7085 aluminum alloy [J]. Journal of Central South University, 2018, 251285-1294

[6]

LeeS H, JungJ G, BaikS, ParkS H. Effects of Ti addition on the microstructure and mechanical properties of Al−Zn−Mg−Cu−Zr alloy [J]. Materials Science and Engineering A, 2021, 801: 140437

[7]

GUO Yue, ZHANG Meng, WANG Zhao-xin, WANG Shun-bo. Effects of cold temperatures, strain rates and anisotropy on the mechanical behavior and fracture morphology of an Al−Zn−Mg−Cu alloy [J]. Materials Science and Engineering A, 2020: 140691. DOI: https://doi.org/10.1016/j.msea.2020.140691.

[8]

TangJ, WangJ-h, TengJ, WangG. Effect of Zn content on the dynamic softening of Al−Zn−Mg−Cu alloys during hot compression deformation [J]. Vacuum, 2021, 184109941

[9]

LiL, ZhuQ-f, ZuoY-b, CuiJ-zhong. Study on the transitional structures of 7075 aluminum alloy ingot after switching off a low-frequency electromagnetic field in the horizontal direct chill casting [J]. Journal of Crystal Growth, 2020, 548125827

[10]

ChenG, ChenW, ZhangG-w, ZhengS-qi. Microstructures and mechanical properties of Al−12Zn−2.4Mg−1.2Cu alloy under different deformation ways [J]. Rare Metal Materials and Engineering, 2016, 45(9): 2237-2241

[11]

LiL, WeiL-j, XuY-j, MaoL, WuS-jun. Study on the optimizing mechanisms of superior comprehensive properties of a hot spray formed Al−Zn−Mg−Cu alloy [J]. Materials Science and Engineering A, 2019, 742102-108

[12]

WeiL-j, HanB-s, YeF, DittaA. Influencing mechanisms of heat treatments on microstructure and comprehensive properties of Al−Zn−Mg−Cu alloy formed by spray forming [J]. Journal of Materials Research and Technology, 2020, 9(3): 6850-6858

[13]

SweetG A W, AmirkhizB S, WilliamsB W, TaylorA. Microstructural evolution of a forged 2XXX series aluminum powder metallurgy alloy [J]. Materials Characterization, 2019, 151: 342-350

[14]

LuoY-j, ZhangZ-feng. Numerical modeling of annular electromagnetic stirring with intercooling in direct chill casting of 7005 aluminum alloy billet [J]. Progress in Natural Science: Materials International, 2019, 29(1): 81-87

[15]

EskinD G, Suyitno, KatgermanL. Mechanical properties in the semi-solid state and hot tearing of aluminium alloys [J]. Progress in Materials Science, 2004, 49(5): 629-711

[16]

ZhangL, EskinD G, LapoorM, KatgermanL. Factors affecting thermal contraction behavior of an AA7050 alloy [J]. Materials Science and Engineering A, 2010, 527: 3264-3270

[17]

LiH-c, CaoF-y, CuoS, JiaY-dong. Effects of Mg and Cu on microstructures and properties of spray-deposited Al−Zn−Mg−Cu alloys [J]. Journal of Alloys and Compounds, 2017, 719: 89-96

[18]

HerzallahH, ElsaydA, ShashA. Effect of carbon nanotubes (CNTs) and silicon carbide (SiC) on mechanical properties of pure Al manufactured by powder metallurgy [J]. Journal of Materials Research and Technology, 2020, 9(2): 1948-1954

[19]

LadephaA D P, NeubingH, BishopD P. Metallurgical assessment of an emerging Al−Zn−Mg−Cu P/M alloy [J]. Materials Science and Engineering A, 2009, 520: 105-113

[20]

WANG Tao, HUANG Yu-feng, YANG Lun, MA Yun-zhu. Microstructure and mechanical properties of 7055 Al alloy prepared under different sintering conditions using powder by-products [J]. Materials Science and Engineering A, 2020: 140562. DOI: https://doi.org/10.1016/j.msea.2020.140562.

[21]

TünçayM M, Muñiz-LermaJ A, BishopD P, BrochuM. Spark plasma sintering and spark plasma upsetting of an Al−Zn−Mg−Cu alloy [J]. Materials Science and Engineering A, 2017, 704: 154-163

[22]

YangQ, ChengD L, ZhangF G, ShiQ W. Spark plasma sintering mechanisms of the Al−Zn−Mg−Cu alloys and TiB2/Al−Zn−Mg−Cu composites [J]. Materials Characterization, 2021, 172: 110825

[23]

TianW-m, LiS-m, ChenX, LiuJ-hua. Intergranular corrosion of spark plasma sintering assembled bimodal grain sized AA7075 aluminum alloys [J]. Corrosion Science, 2016, 107211-224

[24]

SchafferG B, HuoS H, DrennanJ, AuchterlonieG J. The effect of trace elements on the sintering of an Al−Zn−Mg−Cu alloy [J]. Acta Materialia, 2001, 49: 2671-2678

[25]

SchafferG B, SercombeT B, LumleyR N. Liquid phase sintering of aluminium alloys [J]. Materials Chemistry and Physics, 2001, 67: 85-91

[26]

HouJ P, LiR, WangQ, YuH Y. Three principles for preparing Al wire with high strength and high electrical conductivity [J]. Journal of Materials Science and Technology, 2019, 35: 743-751

[27]

BalogM, SimancikF, WalcherM, RajnerW. Extruded Al−Al2O3 composites formed in situ during consolidation of ultrafine Al powders: Effect of the powder surface area [J]. Materials Science and Engineering A, 2011, 529: 131-137

[28]

RenJ, WangR-c, FengY, PengC-qun. Microstructure evolution and mechanical properties of an ultrahigh strength Al−Zn−Mg−Cu−Zr−Sc (7055) alloy processed by modified powder hot extrusion with post aging [J]. Vacuum, 2019, 161: 434-442

[29]

BalogM, OrovcikL, NagyS, KrizikP. To what extent does friction-stir welding deteriorate the properties of powder metallurgy Al? [J]. Journal of Materials Research and Technology, 2020, 9(3): 6733-6744

[30]

BalogM, PolettiC, SimancikF, WalcherM. The effect of native Al2O3 skin disruption on properties of fine Al powder compacts [J]. Journal of Alloys and Compounds, 2011, 509: S235-S238

[31]

GuoF-b, ZhuB-h, JinL-bing. Microstructure and mechanical properties of 7A56 aluminum alloy after solution treatment [J]. Rare Metals, 2017, 7: 1-8

[32]

WangM, HuangL-p, ChenK-h, LiuW-sheng. Influence of minor combined addition of Cr and Pr on microstructure, mechanical properties and corrosion behaviors of an ultrahigh strength Al−Zn−Mg−Cu−Zr alloy [J]. Micron, 2018, 104: 80-88

AI Summary AI Mindmap
PDF

344

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/