Effect of textural characteristics on engineering properties of some sedimentary rocks

Konstantinos Diamantis , Davood Fereidooni , Reza Khajevand , George Migiros

Journal of Central South University ›› 2021, Vol. 28 ›› Issue (3) : 926 -938.

PDF
Journal of Central South University ›› 2021, Vol. 28 ›› Issue (3) : 926 -938. DOI: 10.1007/s11771-021-4654-5
Article

Effect of textural characteristics on engineering properties of some sedimentary rocks

Author information +
History +
PDF

Abstract

As it is commonly known, the estimation of physical and mechanical characteristics of rocks is very important issue in various geotechnical projects. The characteristics are mainly influenced by the microfabric-texture features of rocks. In this research, dry unit weight, effective porosity, point load index, Schmidt rebound hardness, uniaxial compressive strength, and texture coefficient were measured with the aim of correlating the physical and mechanical properties to the texture coefficient. For this purpose, a comprehensive laboratory testing program was conducted after collecting twenty sedimentary block samples including nine limestones and eleven mudstones, taken from Kalidromo (central Greece) in accordance with ASTM and ISRM standards. Also, mineralogical and petrographic properties, textural characteristics as well as X-ray diffractions were studied and the obtained results were statistically described and analysed. The maximum and minimum values of the texture coefficient were 0.13 and 0.50, respectively. The highest value was obtained for the rocks with a large amount of grains. Regression analyses were used to investigate the relationships between the texture coefficient and the engineering properties. Thus, empirical equations were developed and because of the good determination coefficients, they showed that all of the engineering properties were well correlated to the texture coefficient.

Keywords

engineering properties / texture coefficient / regression analysis / limestone / mudstone

Cite this article

Download citation ▾
Konstantinos Diamantis, Davood Fereidooni, Reza Khajevand, George Migiros. Effect of textural characteristics on engineering properties of some sedimentary rocks. Journal of Central South University, 2021, 28(3): 926-938 DOI:10.1007/s11771-021-4654-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

EhrlichR, WeinbergB. An exact method for characterization of grain shape [J]. Sedim Petrol, 1970, 40(1): 205-212

[2]

OlssonW A. Grain size dependence of yield stress in marble [J]. Journal of Geophysical Research, 1974, 79: 4859-4861

[3]

HugmanR H, FriedmanM. Effects of texture and composition on mechanica behavior of experimentally deformed carbonate rocks [J]. American Association of Petroleum Geologists Bulletin, 1979, 63(9): 1478-1489

[4]

OnoderaT F, AsokaK H M. Relation between petrographic characteristics, engineering index properties and mechanics properties of selected sandstone [J]. Bulletin of the International Association of Engineering Geology, 1980, 28: 55-71

[5]

WilliamsH, TurnerF J, GilbertC MPetrography: An introduction to the study of rocks in thin sections [M], 1982, California, W.H. Freeman and Company

[6]

HowarthD F, RowlandsJ C. Quantitative assessment of rock texture and correlation with drillability and strength properties [J]. Rock Mechanics and Rock Engineering, 1987, 20: 57-85

[7]

UlusayR, TureliK, IderM H. Prediction of engineering properties of selected litharenite sandstone from its petrographic characteristics using correlation and multivariate statistical techniques [J]. Engineering Geology, 1994, 37: 135-157

[8]

AzzoniA, BiloF, RondenaE, ZaninettiA. Assessment of texture coefficient for different rocktypes and correlation with uniaxial compressive strength and rock weathering [J]. Rock Mechanics and Rock Engineering, 1996, 29: 36-46

[9]

JengF S, WengM C, LinM L, HuangT H. Influence of petrographic parameters on geotechnical properties of tertiary sandstones from Taiwan [J]. Engineering Geology, 2004, 73: 71-91

[10]

KarakusM, KumralM, KilicO. Predicting elastic properties of intact rocks from index tests using multiple regression modelling [J]. Int J Rock Mech Min Sci, 2005, 42(2): 323-330

[11]

ChangC, ZobackM D, KhaksarA. Empirical relations between rock strength and physical properties in sedimentary rocks [J]. J Petrol Sci Eng, 2006, 51(3): 223-237

[12]

SonmezH, GokceogluC, NefesliogluH A, KayabasiA. Estimation of rock modulus: For intact rocks with an artificial neural network and for rock masses with a new empirical equation [J]. Int J Rock Mech Min Sci, 2006, 43(2): 224-235

[13]

YilmazI, YuksekA G. An example of artificial neural network (ANN) application for indirect estimation of rock parameters [J]. Rock Mechanics and Rock Engineering, 2008, 41(5): 781-795

[14]

SarkarK, TiwaryA, SinghT N. Estimation of strength parameters of rock using artificial neural networks [J]. Bull Eng Geol Environ, 2010, 69(4): 599-606

[15]

YagizS, SezerE A, GokceogluC. Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks [J]. Int J Numer Anal Methods Geomech, 2012, 36(14): 1636-1650

[16]

Yesiloglu-GultekinN, SezerE A, GokceogluC, BahyanH. An application of adaptive neuro fuzzy inference system for estimating the uniaxial compressive strength of certain granitic rocks from their mineral contents [J]. Expert Systems with Applications, 2013, 40(3): 921-928

[17]

AjalloeianR, MohammadiM. Estimation of limestone rock mass deformation modulus using empirical equations [J]. Bull Eng Geol Environ, 2014, 73(2): 541-550

[18]

DiamantisK, GartzosE, MigirosG. Influence of petrographic characteristics on physico-mechanical properties of ultrabasic rocks from central Greece [J]. Bull Eng Geol Environ, 2014, 73(4): 1273-1292

[19]

DormishiA, AtaeiM, MikaeilR, Khalo KakaeiR. Relations between texture coefficient and energy consumption of gang saws in carbonate rock cutting process [J]. Civil Engineering Journal, 2018, 4(2): 413-421

[20]

EsmailzadehA, BehnamS, MikaeilR, NaghadehiM Z, SaeiS. Relationship between texture and uniaxial compressive strength of rocks [J]. Civil Engineering Journal, 2017, 3(7): 480-486

[21]

HemmatiA, GhafooriM, MoomivandH, LashkaripourG R. The effect of mineralogy and textural characteristics on the strength of crystalline igneous rocks using image-based textural quantification [J]. Engineering Geology, 2019, 266: 105467

[22]

HowarthD F, RowlandsJ C. Development of an index to quantify rock texture for qualitative assessment of intact rock properties [J]. Geotechnical Testing Journal, 1986, 9(4): 169-179

[23]

ErsoyA, WallerM D. Textural characterization of rocks [J]. Engineering Geology, 1995, 39123-136

[24]

ÖztürkC A, NasufE, BilginN. The assessment of rock cutability, and physical and mechanical rock properties from a texture coefficient [J]. The Journal of the Southern African Institute of Mining and Metallurgy, 2004, 104(7): 397-402

[25]

AlberM, KahramanS. Predicting the uniaxial compressive strength and elastic modulus of a fault breccia from texture coefficient [J]. Rock Mechanics and Rock Engineering, 2009, 42: 117-127

[26]

TandonR S, GuptaV. The control of mineral constituents and textural characteristics on the petrophysical & mechanical (PM) properties of different rocks of the Himalaya [J]. Engineering Geology, 2013, 153: 125-143

[27]

GuptaV, SharmaR. Relationship between textural, petrophysical and mechanical properties of quartzites: A case study from northwestern Himalaya [J]. Engineering Geology, 2012, 135: 1-9

[28]

ÖztürkC A, NasufE. Strength classification of rock material based on textural properties [J]. Tunnelling and Underground Space Technology, 2013, 37: 45-54

[29]

ÖztürkC A, NasufE, KahramanE. Estimation of rock strength from quantitative assessment of rock texture [J]. The Journal of the Southern African Institute of Mining and Metallurgy, 2014, 1: 471-480

[30]

ASTM. Standard practices for preparing Rock core specimens and determining dimensional and shape tolerances [S]. American Society for Testing and Materials, 2001, D4543.

[31]

UlusayR, HudsonJ AThe blue book: The complete ISRM suggested methods for rock characterization, testing and monitoring, 1974–2006, compilation arranged by the ISRM Turkish National Group [M], 2007, Ankara, Kazan Offset Press

[32]

FereidooniD, KhajevandR. Determining the geotechnical characteristics of some sedimentary rocks from Iran with an emphasis on the correlations between physical, index, and mechanical properties [J]. Geotech Test J, 2018, 41(3): 20170058

[33]

ASTMStandard guide for petrographic examination of dimension stone [S], 2009, West Conshohocken, PA, ASTM International

[34]

FolkR L. Spectral subdivision of limestone types [J]. Am Ass Petrol Geo Mem, 1962, 1: 62-84

[35]

FolkR L. Practical petrographic classification of limestone [J]. Bull Am Ass Petrol Geo, 1959, 431-38

[36]

POTTER P E, MAYNARD J B, PRYOR W A. Sedimentology of shale [M]. New York: Springer, 1980.

[37]

DickJ C, ShakoorA. Lithologic controls of mudrock durability [J]. Q J Eng Geol, 1992, 25: 31-46

[38]

DunhamR JClassification of carbonate rocks according to depositional texture [M], 1962, Tulsa, Oklahoma, American Association of Petroleum Geologists

[39]

EmbryE, AshtonF, KlovanJ. A late Devonian reef tract on northeastern Banks Island, N.W.T [J]. Bulletin of Canadian Petroleum Geology, 1971, 19(4): 730-781

[40]

PettijohnF J, PotterP E, SieverRSand and sandstone [M], 1973, Berlin, Springer

[41]

ASTM. Standard test method for the determination of the point load strength index of rock [S]. American Society for Testing and Materials, 2005.

[42]

ASTM. Standard test method of unconfined compressive strength of intact rock core specimens [S]. American Society for Testing and Materials, 1986.

[43]

PanozzoR. Orientation and misorientation imaging: integration of microstructural and extural analysis [M]. Textures of Geological Materials, 1994, Oberursel, Verlag

[44]

ManouchehrianA, SharifzadehM, MoghadamR H. Application of artificial neural networks and multivariate statistics to estimate UCS using textural characteristics [J]. Int J Min Sci Technol, 2012, 222: 229-236

[45]

BandiniA, BerryP. Influence of marble’s texture on its mechanical behavior [J]. Rock Mechanics and Rock Engineering, 2013, 46: 785-799

[46]

AjalloeianR, MansouriH, BaradaranE. Some carbonate rock texture effects on mechanical behavior, based on Koohrang tunnel data, Iran [J]. Bull Eng Geol Environ, 2016, 76(1): 295-307

[47]

ErsoyH, AcarS. Influences of petrographic and textural properties on the strength of very strong granitic rocks [J]. Environ Earth Sci, 2016, 75: 1461-1476

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/