Ultra-low temperature anodic bonding of silicon and glass based on nano-gap dielectric barrier discharge

Fu-rong Yao , Ming-qiang Pan , Zong-jian Zhu , Ji-zhu Liu , Yang-jun Wang

Journal of Central South University ›› 2021, Vol. 28 ›› Issue (2) : 351 -360.

PDF
Journal of Central South University ›› 2021, Vol. 28 ›› Issue (2) : 351 -360. DOI: 10.1007/s11771-021-4607-z
Article

Ultra-low temperature anodic bonding of silicon and glass based on nano-gap dielectric barrier discharge

Author information +
History +
PDF

Abstract

The article improves the process of dielectric barrier discharge (DBD) activated anode bonding. The treated surface was characterized by the hydrophilic surface test. The results showed that the hydrophilic angle was significantly reduced under nano-gap conditions and the optimal discharge voltage was 2 kV Then, the anodic bonding and dielectric barrier discharge activated bonding were performed in comparison experiments, and the bonding strength was characterized by tensile failure test. The results showed that the bonding strength was higher under the nano-gap dielectric barrier discharge. This process completed 110 °C ultra-low temperature anodic bonding and the bonding strength reached 2 MPa. Finally, the mechanism of promoting bonding after activation is also discussed.

Keywords

dielectric barrier discharge / anodic bonding / ultra-low temperature

Cite this article

Download citation ▾
Fu-rong Yao, Ming-qiang Pan, Zong-jian Zhu, Ji-zhu Liu, Yang-jun Wang. Ultra-low temperature anodic bonding of silicon and glass based on nano-gap dielectric barrier discharge. Journal of Central South University, 2021, 28(2): 351-360 DOI:10.1007/s11771-021-4607-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WallisG, PomerantzD I. Field assisted glass-metal sealing [J]. Journal of Applied Physics, 1969, 40: 3946-3949

[2]

POMERANTZ D I. Anodic bonding: US Pateat, 3397278 [P]. 1968-08-13.

[3]

ChenMX, YiX J, GanZ Y, LiuS. Reliability of anodically bonded silicon-glass packages [J]. Sensors & Actuators A Physical, 2005, 120(1): 291-295

[4]

LeibJ, GyengeO, HansenU, MausS, HauckK, ZoschkeK, ToepperM. Wafer-level glass-caps for advanced optical applications [C]. Proceedings Electronic Components & Technology Conference, 2012, Lake Buena Vista, FL, IEEE, 16421648

[5]

DASCHNER R, KÜBLER H, LÖW R, BAUR H, FRÜHAUF N, PFAU T. Triple stack glass-to-glass anodic bonding for optogalvanic spectroscopy cells with electrical feedthroughs [J]. Applied Physics Letters, 2014, 105(4). DOI: https://doi.org/10.1063/1.4891534.

[6]

LeeH J, KimY, YoonE S, ChoI J. Versatile size and shape microlens arrays with high numerical apertures [J]. Journal of Microelectromechanical Systems, 2014, 23(4): 771-773

[7]

YooS, JinJ Y, HaJ G, JiC H, KimY K. Two-dimensional optical scanner with monolithically integrated glass microlens [J]. Journal of Micromechanics & Microengineering, 2014, 24(5): 055009

[8]

BargielS, GoreckiC, BarańskiM, PassillyN, WiemerM, JiaC, FrömelJ. 3D micro-optical lens scanner made by multi-wafer bonding technology [J]. Proceedings of Spie the International Society for Optical Engineering, 2013, 861645

[9]

SurdoS, MerloS, CarpignanoF, StrambiniL M, TronoC, GiannettiA, BaldiniF, BarillaroG. Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis [J]. Lab on A Chip, 2012, 12214403-4415

[10]

MhaskarR, KnappeS, KitchingJ. A low-power, high-sensitivity micromachined optical magnetometer [J]. Applied Physics Letters, 2012, 101(83): 241105

[11]

KOGITA Y, HIRAI Y, TABATA O, TSUCHIYA T. Double-side-drive electrostatic optical chopper for time-resolved Raman spectroscopy [C]// 2014 International Conference on Optical MEMS and Nanophotonics (OMN). IEEE, 2014. DOI: https://doi.org/10.1109/OMN.2014.6924545.

[12]

MalekiT, FogleB, ZiaieB. A batch fabricated capacitive pressure sensor with an integrated Guyton capsule for interstitial fluid pressure measurement [J]. Journal of Micromechanics & Microengineering, 2011, 215054005

[13]

HsuY W, ChenJ Y, ChienH T, ChenS, LinS T, LiaoL-P. New capacitive low-g triaxial accelerometer with low cross-axis sensitivity [J]. Journal of Micromechanics & Microengineering, 2010, 205055019

[14]

LeeM C, KangS J, JungK D, ChoaS H, ChoY C. A high yield rate MEMS gyroscope with a packaged SiOG process [J]. Journal of Micromechanics & Microengineering, 2005, 15112003-2010

[15]

QuesteS, SalutR, ClatotS, RauchJ Y, KhanM C G. Manufacture of microfluidic glass chips by deep plasma etching, femtosecond laser ablation, and anodic bonding [J]. Microsystem Technologies, 2010, 16(s89): 1485-1493

[16]

ChangT H. Electron-beam microcolumns for lithography and related applications [J]. Journal of Vacuum Science & Technology B: Microelectronics & Nanometer Structures, 1996, 14: 3774

[17]

HsiehG W, TsaiC H, LinW C. Anodic bonding of glass and silicon wafers with an intermediate silicon nitride film and its application to batch fabrication of SPM tip arrays [J]. Microelectronics Journal, 2005, 36(7): 678-682

[18]

WeiJ, XieH, NaiM L, WongC K, LeeL C. Low temperature wafer anodic bonding [J]. Journal of Micromechanics & Microengineering, 2003, 13(2): 217-222

[19]

YouZ, MaB, RuanY, ChenS, ZhangG-F. Microfabrication of MEMS alkali metal vapor cells for chip-scale atomic devices [J]. Optics & Precision Engineering, 2013, 211440-1446 in Chinese)

[20]

DragoiV, MittendorferG, ThannerC, LindnerP. Wafer-level plasma activated bonding: New technology for MEMS fabrication [J]. Microsystem Technologies, 2008, 14(45): 509-515

[21]

ChoiS W, ChoiW B, LeeY H, JuB K, SungM Y, KimB H. The analysis of oxygen plasma pretreatment for improving anodic bonding [J]. Journal of the Electrochemical Society, 2002, 149(1): G8-G11

[22]

CoolsP, AsadianM, NicolausW, DeclercqH, MorentR, deG N. Surface treatment of PEOT/PBT (55/45) with a dielectric barrier discharge in air, helium, argon and nitrogen at medium pressure [J]. Materials, 2018, 11(3): 391

[23]

MuiT S M, SilvaL L G, PrysiazhnyiV, KostovK G. Surface modification of aluminium alloys by atmospheric pressure plasma treatments for enhancement of their adhesion properties [J]. Surface and Coatings Technology, 2017, 312: 32-36

[24]

WangD-x, WuY-t, ChuJ-R. Research on low temperature anodic bonding technique [J]. Journal of Transducer Technology, 2005, 2437-39(in Chinese)

[25]

KamalM R, KalyonD. Heat transfer and microstructure in extrusion blowmolding [J]. Polymer Engineering and Science, 1983, 23(9): 503-509

[26]

KibriaM G, ZhangF, LeeT H, KimM J, HowladerM M R. Comprehensive investigation of sequential plasma activated Si/Si bonded interfaces for nano-integration on the wafer scale [J]. Nanotechnology, 2010, 21(13): 134011

[27]

HowladerM M R, ZhangF. Void-free strong bonding of surface activated silicon wafers from room temperature to annealing at 600 °C [J]. Thin Solid Films, 2010, 5192804-808

[28]

HowladerM M R, KibriaM G, ZhangF, KimM J. Hybrid plasma bonding for void-free strong bonded interface of silicon/glass at 200 °C [J]. Talanta, 2010, 82(2): 508-515

AI Summary AI Mindmap
PDF

181

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/