Support pressure assessment for deep buried railway tunnels using BQ-index

Ming-nian Wang , Zhi-long Wang , Jian-jun Tong , Xiao Zhang , Yu-cang Dong , Da-gang Liu

Journal of Central South University ›› 2021, Vol. 28 ›› Issue (1) : 247 -263.

PDF
Journal of Central South University ›› 2021, Vol. 28 ›› Issue (1) : 247 -263. DOI: 10.1007/s11771-021-4600-6
Article

Support pressure assessment for deep buried railway tunnels using BQ-index

Author information +
History +
PDF

Abstract

Estimation of support pressure is extremely important to the support system design and the construction safety of tunnels. At present, there are many methods for the estimation of support pressure based on different rock mass classification systems, such as Q system, GSI system and RMR system. However, various rock mass classification systems are based on different tunnel geologic conditions in various regions. Therefore, each rock mass classification system has a certain regionality. In China, the BQ-Inex (BQ system) has been widely used in the field of rock engineering ever since its development. Unfortunately, there is still no estimation method of support pressure with BQ-index as parameters. Based on the field test data from 54 tunnels in China, a new empirical method considering BQ-Inex, tunnel span and rock weight is proposed to estimate the support pressure using multiple nonlinear regression analysis methods. And then the significance and necessity of support pressure estimation method for the safety of tunnel construction in China is explained through the comparison and analysis with the existing internationally widely used support pressure estimation methods of RMR system, Q system and GSI system. Finally, the empirical method of estimating the support pressure based on BQ-index was applied to designing the support system in the China’s high-speed railway tunnel—Zhengwan high-speed railway and the rationality of this method has been verified through the data of field test.

Keywords

rock mass classification / support pressure / deep buried tunnel / field test / multiple nonlinear regression analysis / BQ-Index

Cite this article

Download citation ▾
Ming-nian Wang, Zhi-long Wang, Jian-jun Tong, Xiao Zhang, Yu-cang Dong, Da-gang Liu. Support pressure assessment for deep buried railway tunnels using BQ-index. Journal of Central South University, 2021, 28(1): 247-263 DOI:10.1007/s11771-021-4600-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

TerzaghiKRock defects and load on tunnel supports [M], 1946, Youngstown, Commercial Shearing and Stamping Company

[2]

BawdenW F, hyettA J, lauschP. An experimental procedure for the in situ testing of cable bolts [J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics, 1992, 29(5): 525-533

[3]

DeereD U, deereD W. The rock quality designation (RQD) index in practice [C]. Rock Classification System for Engineering Purposes, 1988, Philadelphia, American Society for Testing and Materials, 91101

[4]

WickhamG E, tiedmannH RResearch in ground support and its evaluation for coordination with system analysis in rapid excavation [R], 1972, San Francisco, Jacobs Associates

[5]

BIENIAWSKI Z T. Rock mass classification in rock engineering [C]//Symposium Proceedings of Exploration for Rock Engineering. Johannesburg, 1976: 97–106. https://www.scirp.org/reference/ReferencesPapers.aspx7ReferenceID=1424309.

[6]

BartonN, LienR, LundeJ. Engineering classification of rock masses for the design of tunnel support [J]. Rock Mechanical and Rock Engineering, 1974, 6(4): 189-239

[7]

VoegeleM D, fairhurstC. A numerical study of excavation support loads in jointed rock masses [C]. The 23rd Symposium on Rock Mechanics, 1982, Berkeley, the University of California, 673683

[8]

ÜnalEDevelopment of design guidelines and roof control standards for coal mine roofs [D], 1983, Philadelphia, Pennsylvania State University

[9]

ÜnalE. Rock reinforcement design and its application in mining [C]. Proceedings of International Symposium on Rock Support, 1992, Sudbury, Canada, Publ Rotterdam: A Balkema, 541546

[10]

ÜNAL E. Modified rock mass classification: M-RMR system [C]//Milestone in Rock Engineering, the Bieniawski Jubilee Collection. Balkema, Rotterdam, 1996: 203–223. https://www.researchgate.net/publication/290984288_Modified_rock_mass_classification_M-RMR_system.

[11]

VenkateswarluVGeomechanics classification of coal measure rocks vis-á-vis roof supports [D], 1986, Dhanbad, Indian School of Mines

[12]

GhoseA K, ghoshC N. Design of support systems-A methodological approach [C]. Proc Int Symposium on Rock Support, 1992, Sudbury, Canada, Publ Rotterdam: A Balkema

[13]

BhasinR. The use of stress-strength relationship in the assessment of tunnel stability [J]. Tunnelling and Underground Space Technology, 1996, 11(1): 93-98

[14]

VermanMRock mass-tunnel support interaction analysis [D], 1993, Roorkee, India, University of Roorkee

[15]

SignB, JethwaJ L, dubeA K, singhB. Correlation between observed support pressure and rock mass quality [J]. Tunnelling and Underground Space Technology, 1992, 7(1): 59-74

[16]

PalmstromARMi-A rock mass characterization system for rock engineering purposes [D], 1995, Norway, University of Oslo

[17]

PalmstromA. Characterizing rock masses by the RMi for use inpractical rock engineering, Part 1: The development of the rock mass index(RMi) [J]. Tunnelling and Underground Space Technology, 1996, 11(2): 175-188

[18]

PalmstromA. Recent developments in rock support estimates by the RMi [J]. Journal of Rock Mechanics and Tunnelling Technology, 2000, 6(1): 1-19

[19]

GeolR K, jethwaJ L, dharB B. Effect of tunnel size on support pressure [J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics, 1996, 33(7): 749-755

[20]

GRIMSTAD E, BARTON N. Updating the Q-system for NMT [C]//Proc of the International Symposium on Sprayed Concrete-modern Use of Wet Mix Sprayed Concrete for Underground Support. 1993: 46–66.

[21]

BhasinR, GrimstadE. The use of stress-strength relationship in the assessment of tunnel stability [J]. Tunnelling & Underground Space Technology, 1996, 11(1): 93-98

[22]

BartonN. Some new Q-value correlations to assist in site characterization and tunnel design [J]. Int J Rock Mech Min Sci, 2002, 39: 185-216

[23]

ZhangX, WangM-n, WangZ-l, LiJ-w, ZhaoS-g, TongJ-j, LiuD-G. Stability analysis model for a tunnel face reinforced with bolts and an umbrella arch in cohesive-frictional soils [J]. Computers and Geotechnics, 2020, 124: 103635

[24]

KastnerHStatik des tunnel-und stollenbaues auf der grundlage geomechanischer erkenntnisse [M], 1962, Berlin-Göttingen, Springer in German)

[25]

LuC, YuL, WangM-nian. Upper bound analysis of collapse failure of deep tunnel under karst cave considering seismic force [J]. Soil Dynamics and Earthquake Engineering, 2020, 123106003

[26]

DaemenJ J KTunnel support loading caused by rock failure [D], 1975, Minneapolis, University of Minnesota

[27]

HoekE, BrownE TUnderground excavations in rock [M], 1980, London, Institution of Mining and Metallurgy

[28]

BrownE T, brayJ W, landanyiB, HoekE. Ground response curves for rock tunnels [J]. Journal of Geotechnical Engineering, 1983, 109(1): 15-39

[29]

SheoreyP R. Support pressure estimation in failed rock conditions [J]. Engineering Geology, 1985, 22(2): 127-140

[30]

Carranza-torresC. Elasto-plastic solution of tunnel problems using the generalized form of the Hoek-Brown failure criterion [J]. International Journal of Rock Mechanics and Mining Science, 2004, 41(1): 629-639

[31]

OsgouiR R, unalE. An empirical method for design of grouted bolts in rock tunnels based on the geological strength index (GSI) [J]. Engineering Geology, 2009, 107(4): 154-166

[32]

DehkordiM S, lazemiH A, shahriarK. Estimation of the rock load in non-squeezing ground condition using the post failure properties of rock mass [J]. Geotechnical and Geological Engineering, 2015, 33(4): 1115-1128

[33]

VeogeleM D, fairhurstC. A numerical study of excavation support loads in jointed rock masses [C]. The 23rd Symposium on Rock Mechanics, 1982, Berkeley, The University of California, 673-683

[34]

WhittakerB N, smithS F, mathesonG D. Influence of in-situ stress field on the stability of mine tunnels [C]. Proc ISRM Symposium: Eurock’92 Rock Characterization, 1992, London, J A Hudson, 227232

[35]

OsgouiRDevelopment of an elasto-plastic analytical model for design of grouted rock bolts in tunnels with particular reference to poor rock masses [D], 2007, Ankara, Middle East Technical University

[36]

BieniawskiZ T. Engineering classification of jointed rock masses [J]. Civil Engineering South Africa, 1973, 15(12): 335-343

[37]

BIENIAWSKI Z T. The geomechanics classification in rock engineering applications [C]//4th ISRM Congress: International Society for Rock Mechanics and Rock Engineering. Montreux, Switzerland, 1979. DOI: https://doi.org/10.1016/0148-9062(80)90601-4.

[38]

HashemiM, MoghaddasS, AjalloeianR. Application of rock mass characterization for determining the mechanical properties of rock mass: A comparative study [J]. Rock Mechanics and Rock Engineering, 2010, 43(3): 305-320

[39]

HoekE. Strength of rock and rock masses [J]. International Society for Rock Mechanics News Journal, 1994, 2(2): 4-16

[40]

HOEK E, KAISER P K, BAWDEN W F. Support of underground excavations in hard rock [M]. Balkema, Canberra, 1995. DOI: www.logobook.ru/prod_show.php/objectuid=12674551.

[41]

OsgouiR, UnalE. Characterization of weak rock masses using GSI-Index and the estimation of support-pressure [C]. The 40th US Symposium on Rock Mechanics (USRMS), 2005, Anchorage, Alaska, American Rock Mechanics Association

[42]

HoekE, BrownE T. Practical estimates of rock mass strength [J]. International Journal of Rock Mechanics and Mining Science, 1997, 34(8): 1165-1186

[43]

SonmezH, UlusayR. Modifications to the geological strength index (GSI) and their applicability to stability of slopes [J]. International Journal of Rock Mechanics and Mining Science, 1999, 36(6): 743-760

[44]

SonmezH, UlusayR. A discussion on the Hoek-Brown failure criterion and suggested modifications to the criterion verified by slope stability case studies [J]. Yerbilimleri, 2002, 26: 77-99

[45]

CaiM, KaiserP K, unoH, TasakaY, MinamiM. Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system [J]. International Journal of Rock Mechanics and Mining Science, 2004, 41(1): 3-19

[46]

WANG Guang-de, SHI Yu-chuan, LIU Han-chao, KOU Jia-wei. The classification of rock mass around tunnel and underground chamber for water conservancy and hydroelectric engineering [J]. Journal of Hydroelectric Engineering, 2006(2): 123–127. DOI: https://doi.org/10.1061/(ASCE)0887381X(2006)20:1(20). (in Chinese)

[47]

ShenY-j, XuG-l, SongS-w, LiZ-p, FengX-m, DongJ-xing. A classification method of surrounding rock mass in hydropower project in high geostress area [J]. Chinese Journal of Rock Mechanical and Engineering, 2014, 33(11): 2267-2275(in Chinese)

[48]

LiuZ X, dangW G. Rock quality classification and stability evaluation of undersea deposit based on M-IRMR [J]. Tunnelling and Underground Space Technology, 2014, 40: 95-101

[49]

GB/T50218-2014Standard for engineering classification of rock masses [S], 2014, Beijing, the National Standards Compilation Group of People’s Republic of China(in Chinese)

[50]

XuH-f, ChenF, WangB, HuaZ-m, GenH-S. Relationship between RMR and BQ for rock mass classification and estimation of its mechanical parameters [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 195-198(in Chinese)

[51]

WangS J, LeeC F, YueZ Q. Global quality assessment of rock works for permanent shiplock of the three gorges project on Yangtze river [J]. China Engineering Geology, 2004, 76(1): 41-64 2

[52]

SunH, ZhengY-r, WangZ-q, ZhangL-ming. Discussion and determination to surrounding rock classification of metal mine [J]. Procedia Engineering, 2011, 26: 1740-1748

[53]

YuW-j, GaoQ, HanY, ZhangZ-ping. Non-linear coupling classification technique of surrounding rock mass and its application in Jingchuan Mine [J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 663-669(in Chinese)

[54]

FengX T, zhangC, QiuS, ZhouH, JiangQ, LiS. Dynamic design method for deep hard rock tunnels and its application [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8: 443-461

[55]

ChenX, XuZ. The ultrasonic P-wave velocity-stress relationship of rocks and its application [J]. Bulletin of Engineering Geology and the Environment, 2017, 76: 661-669

[56]

ShenY-j, YanR-x, YangG-s, XuG-l, WangS-Y. Comparisons of evaluation factors and application effects of the new [BQ] GSI system with international rock mass classification systems [J]. Geotechnical and Geological Engineering, 2017, 35: 2523-2548

[57]

LiuQ-s, LiuJ-p, PanY-c, KongX-x, HongK-rong. A case study of TBM performance prediction using a Chinese rock mass classification system-Hydropower classification (HC) method [J]. Tunnelling and Underground Space Technology, 2017, 65: 140-154

[58]

KomurluE, DemirS. Use of rock mass rating (RMR) values for support designs of tunnels excavated in soft rocks without squeezing problem [J]. GeoScience Engineering, 2019, 2: 1-17

[59]

WuA, LiuF. Advancement and application of the standard of engineering classification of rock masses [J]. China Journal Rock Mechanical Engineering, 2012, 31(8): 1513-1523

[60]

BieniawskiZ TEngineering rock mass classifications: A complete manual for engineers and geologists in mining, civil, and petroleum engineering [M], 1989, Toronto, John Wiley and Sons

[61]

HoekE, BrownE T. Practical estimates of rock mass strength [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1165-1186

[62]

DoN A, diasD, OresteP P. The behaviour of the segmental tunnel support studied by the hyperstatic reaction method [J]. European Journal of Environmental, 2014, 18(4): 489-510

[63]

DoN A, diasD, OresteP P, djeran-maigreI. A new numerical approach to the hyperstatic reaction method for segmental tunnel linings [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(15): 1617-32

[64]

OresteP. A numerical approach to the hyperstatic reaction method for the dimensioning of tunnel supports [J]. Tunnelling and Underground Space Technology, 2007, 22(2): 185-205

[65]

OresteP, SpagnoliG, CeravoloL A. A numerical model to assess the creep of shotcrete linings [J]. Geotechnical Engineering, 2019, 172(4): 344-354

[66]

OresteP, SpagnoliG, RamosC L. Evaluation of the safety factors of shotcrete linings during the creep stage [J]. Geotechnical Engineering, 2020, 173(3): 274-282

[67]

OresteP, SpagnoliG, RamosC A L. The elastic modulus variation during the shotcrete curing jointly investigated by the convergence-confinement and the hyperstaticreaction methods [J]. Geotechnical and Geological Engineering, 2019, 37: 1435-1452

[68]

OresteP, SpagnoliG, RamosC L. Assessment of the safety factor evolution of the shotcrete lining for different curing ages [J]. Geotechnical and Geological Engineering, 2019, 37(6): 5555-5563

[69]

TB10003-2016Code for design on tunnel of railway [S], 2016, Beijing, China Railway Publishing House(in Chinese)

[70]

WangZ-jian. Research on key technology of large cross-section mechanized construction of Zheng-Wan high-speed rail way [J]. Tunnel Construction, 2018, 38(8): 1257-1270(in Chinese)

[71]

JinQ-guo. Optimization of support design of large-scale mechanized construction of Zhengzhou-Wanzhou highspeed railway tunnel [J]. Tunnel Construction, 2018, 38(8): 1324-1333(in Chinese)

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/