Nonlinear observer-based optimal control of an active transfemoral prosthesis

Anna Bavarsad , Ahmad Fakharian , Mohammad Bagher Menhaj

Journal of Central South University ›› 2021, Vol. 28 ›› Issue (1) : 140 -152.

PDF
Journal of Central South University ›› 2021, Vol. 28 ›› Issue (1) : 140 -152. DOI: 10.1007/s11771-021-4592-2
Article

Nonlinear observer-based optimal control of an active transfemoral prosthesis

Author information +
History +
PDF

Abstract

This paper designs a joint controller/observer framework using a state dependent Riccati equation (SDRE) approach for an active transfemoral prosthesis system. An integral state control technique is utilized to design a tracking controller for a robot/prosthesis system. This framework promises a systematic flexible design using which multiple design specifications such as robustness, state estimation, and control optimality are achieved without the need for model linearization. Performance of the proposed approach is demonstrated through simulation studies, which show improvements versus a robust adaptive impedance controller and an extended Kalman filter-based state estimation method. Numerical results confirm the benefits of our method over the above-mentioned approaches with regard to control optimality and state estimation.

Keywords

state dependent Riccati equation / observer / integral state control / tracking / active transfemoral prosthesis

Cite this article

Download citation ▾
Anna Bavarsad, Ahmad Fakharian, Mohammad Bagher Menhaj. Nonlinear observer-based optimal control of an active transfemoral prosthesis. Journal of Central South University, 2021, 28(1): 140-152 DOI:10.1007/s11771-021-4592-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AZIMI V, SIMON D, RICHTER H. Stable robust adaptive impedance control of a prosthetic leg [C]//ASME 2015 Dynamic Systems and Control Conference. 2015: 1–10. DOI: https://doi.org/10.1115/DSCC2015-9794.

[2]

PopovićD, OğuztöreliM N, steinR B. Optimal control for an above-knee prosthesis with two degrees of freedom [J]. Journal of Biomechanics, 1995, 28(1): 89-98

[3]

SupF, BoharaA, GoldfarbM. Design and control of a powered transfemoral prosthesis [J]. The International Journal of Robotics Research, 2008, 27(2): 263-73

[4]

RichterH, SimonD. Robust tracking control of a prosthesis test robot [J]. Journal of Dynamic Systems, Measurement, and Control, 2014, 136(3): 031011

[5]

ZhaoH, HornJ, ReherJ, ParedesV, AmesA D. First steps toward translating robotic walking to prostheses: A nonlinear optimization based control approach [J]. Autonomous Robots, 2017, 413725-742

[6]

AzimiV, AbolfazlF S, TienN T, simonD. Robust adaptive impedance control with application to a transfemoral prosthesis and test robot [J]. Journal of Dynamic Systems, Measurement, and Control, 2018, 140(12): 121002

[7]

AzimiV, ShuT, ZhaoH, GehlharR, SimonD, AmesA D. Model-based adaptive control of transfemoral prostheses: Theory, simulation, and experiments [J]. IEEE Transaction on Systems, Man, and Cybernetics: Systems, 2019, 15: 1-18

[8]

BAVARSAD A, FAKHARIAN A, MENHAJ M B. Nonlinear optimal control of an active transfemoral prosthesis using state dependent Riccati equation (SDRE) approach [J]. Amirkabir Journal of Mechanical Engineering, 2020, Online. DOI: https://doi.org/10.22060/MEJ.2020.17815.6668.

[9]

BavarsadA, FakharianA, MenhajM B. Optimal sliding mode controller for an active transfemoral prosthesis using state-dependent Riccati equation approach [J]. Arabian Journal for Science and Engineering, 2020, 456559-6572

[10]

SlotineJ J, liWApplied nonlinear control [M], 1991, Englewood Cliffs, NJ, Prentice Hall

[11]

ÇIMEN T. State-dependent Riccati equation (SDRE) control: A survey [C]//IFAC Proceedings Volumes. Seoul, 2008: 3761–3775. DOI: https://doi.org/10.3182/20080706-5-KR-1001.00635.

[12]

CloutierJ R. State-dependent Riccati equation techniques: An overview [C]. In Proceedings of the 1997 American Control Conference (Cat.No.97CH36041) IEEE, 1997, 2: 932-936

[13]

KorayemM H, nekooS R. State-dependent differential Riccati equation to track control of time-varying systems with state and control nonlinearities [J]. ISA Transactions, 2015, 57: 117-135

[14]

KorayemM H, nekooS R. Finite-time state-dependent Riccati equation for time-varying nonaffine systems: Rigid and flexible joint manipulator control [J]. ISA Transaction, 2015, 54: 125-44

[15]

BEIKZADEH H, TAGHIRAD H D. Stability analysis of the discrete-time difference SDRE state estimator in a noisy environment [C]//2009 IEEE International Conference on Control and Automation. 2009: 1751–1756. IEEE. DOI: https://doi.org/10.1109/ICCA.2009.5410145.

[16]

ÇimenT, MccaffreyD, HarrisonR F, banksS P. Asymptotically optimal nonlinear filtering [C]. IFAC Proceedings Volumes, 2007, 40(7): 756-761

[17]

KorayemM H, lademakhiN Y, nekooS R. Application of the state-dependent Riccati equation for flexible-joint arms: Controller and estimator design [J]. Optimal Control Applications and Methods, 2018, 39(2): 792-808

[18]

NekooR S. Tutorial and review on the state-dependent Riccati equation [J]. Journal of Applied Nonlinear Dynamics, 2019, 8(2): 109-66

[19]

FAKOORIAN S A, SIMON D, RICHTER H, AZIMI V. Ground reaction force estimation in prosthetic legs with an extended Kalman filter [C]//2016 Annual IEEE Systems Conference (SysCon). Orlando, 2016: 1–6. IEEE. DOI: https://doi.org/10.1109/SYSCON.2016.7490563.

[20]

FakoorianS, AzimiV, MoosaviM, RichterH, SimonD. Ground reaction force estimation in prosthetic legs with nonlinear Kalman filtering methods [J]. Journal of Dynamic Systems, Measurement, and Control, 2017, 139(11): 111004

[21]

MOOSAVI S M, FAKOORIAN S A, AZIMI V, RICHTER H, SIMON D. Derivative-free Kalman filtering-based control of prosthetic legs [C]//In 2017 American Control Conference (ACC). Seattle, 2017: 5205–5210. DOI: https://doi.org/10.23919/ACC.2017.7963763.

[22]

AzimiV, NguyenT T, sharifiM, FakoorianS A, simonD. Robust ground reaction force estimation and control of lower-limb prostheses: Theory and simulation [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 5081-12

[23]

NekooS R. Digital implementation of a continues-time nonlinear optimal controller: An experimental study with real-time computations [J]. ISA Transaction, 2020, 101: 346-357

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/