Role of Ag addition on microstructure, mechanical properties, corrosion behavior and biocompatibility of porous Ti-30 at%Ta shape memory alloys

Mustafa Khaleel Ibrahim , Safaa Najah Saud , Esah Hamzah , Engku Mohamad Nazim

Journal of Central South University ›› 2020, Vol. 27 ›› Issue (11) : 3175 -3187.

PDF
Journal of Central South University ›› 2020, Vol. 27 ›› Issue (11) : 3175 -3187. DOI: 10.1007/s11771-020-4539-z
Article

Role of Ag addition on microstructure, mechanical properties, corrosion behavior and biocompatibility of porous Ti-30 at%Ta shape memory alloys

Author information +
History +
PDF

Abstract

In the present study, the thermal, mechanical, and biological properties of xAg/Ti-30Ta (x=0, 0.41, 0.82 and 2.48 at%) shape memory alloys (SMAs) were investigated. The study was conducted using optical and scanning electron microscopy (SEM), X-ray diffractometry (XRD), compression test, and shape memory testing. The xAg/Ti-Ta was made using a powder metallurgy technique and microwave-sintering process. The results revealed that the addition of Ag has a significant effect on the pore size and shape, whereas the smallest pore size of 11 µm was found with the addition of 0.41 at% along with a relative density of 72%. The fracture stress and strain increased with the addition of Ag, reaching the minimum values around 0.41 at% Ag. Therefore, this composition showed the maximum stress and strain at fracture region. Moreover, 0.82 Ag/Ti-Ta shows more excellent corrosion resistance and biocompatibility than other percentages, obtaining almost the same behaviour of the pure Ti and Ti-6Al-4V alloys, which can be recommended for their promising and potential response for biomaterial applications.

Keywords

porous xAg/Ti-Ta / shape memory alloys (SMAs) / microwave sintering process / microstructure characteristics / mechanical properties and corrosion behavior / bioactivity

Cite this article

Download citation ▾
Mustafa Khaleel Ibrahim, Safaa Najah Saud, Esah Hamzah, Engku Mohamad Nazim. Role of Ag addition on microstructure, mechanical properties, corrosion behavior and biocompatibility of porous Ti-30 at%Ta shape memory alloys. Journal of Central South University, 2020, 27(11): 3175-3187 DOI:10.1007/s11771-020-4539-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BiesiekierskiA, WangJ, Abdel-HadyG M, WenC-e. A new look at biomedical Ti-based shape memory alloys [J]. Acta Biomaterialia, 2012, 8(5): 1661-1669

[2]

MiyazakiS, KimH Y, HosodaH. Development and characterization of Ni-free Ti-base shape memory and superelastic alloys [J]. Materials Science and Engineering A, 2006, 438-440: 18-24

[3]

WeverD J, VeldhuizenA G, SandersM M, SchakenraadJ M, vanH J R. Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy [J]. Biomaterials, 1997, 18(16): 1115-1120

[4]

NiinomiM. Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr [J]. Biomaterials, 2003, 24(16): 2673-2683

[5]

LaheurteP, PrimaF, EberhardtA, GloriantT, WaryM, PatoorE. Mechanical properties of low modulus β titanium alloys designed from the electronic approach [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3(8): 565-573

[6]

NingC-q, ZhouYu. Development and research status of biomedical titanium alloys [J]. Material Science and Technology, 2002, 10(1): 100-106(in Chinese)

[7]

FukuiY, InamuraT, HosodaH, WakashimaK, MiyazakiS. Mechanical properties of a Ti-Nb-Al shape memory alloy [J]. Materials Transactions, 2004, 45(4): 1077-1082

[8]

KimH Y, HashimotoS, KimJ I, HosodaH, MiyazakiS. Mechanical properties and shape memory behavior of Ti-Nb alloys [J]. Materials Transactions, 2004, 45(7): 2443-2448

[9]

KimH Y, OhmatsuY, KimJ I, HosodaH, MiyazakiS. Mechanical properties and shape memory behavior of Ti-Mo-Ga alloys [J]. Materials Transactions, 2004, 45(4): 1090-1095

[10]

MaeshimaT, NishidaM. Shape memory properties of biomedical Ti-Mo-Ag and Ti-Mo-Sn alloys [J]. Materials Transactions, 2004, 45(4): 1096-1100

[11]

DuerigT W, AlbrechtJ, RichterD, FischerP. Formation and reversion of stress induced martensite in Ti-10V-2Fe-3Al [J]. Acta Metallurgica, 1982, 30(12): 2161-2172

[12]

BahadorA, HamzahE, KondohK, AbuB T A, YusofF, ImaiH, SaudS N, IbrahimM K. Effect of deformation on the microstructure, transformation temperature and superelasticity of Ti-23 at% Nb shapememory alloys [J]. Materials & Design, 2017, 118: 152-162

[13]

BuenconsejoP J S, KimH Y, HosodaH, MiyazakiS. Shape memory behavior of Ti-Ta and its potential as a high-temperature shape memory alloy [J]. Acta Materialia, 2009, 57(4): 1068-1077

[14]

MaY-q, YangS-y, JinW-j, WangY-n, WangC-p, LiuX-jun. Microstructure, mechanical and shape memory properties of Ti-55Ta-xSi biomedical alloys [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(2): 287-291

[15]

ZhouY L, NiinomiM, AkahoriT. Effects of Ta content on Young’s modulus and tensile properties of binary Ti-Ta alloys for biomedical applications [J]. Materials Science and Engineering A, 2004, 371(12): 283-290

[16]

MareciD, ChelariuR, GordinD M, UngureanuG, GloriantT. Comparative corrosion study of Ti-Ta alloys for dental applications [J]. Acta Biomaterialia, 2009, 5(9): 3625-3639

[17]

KimH Y, FukushimaT, BuenconsejoP J S, NamT H, MiyazakiS. Martensitic transformation and shape memory properties of Ti-Ta-Sn high temperature shape memory alloys [J]. Materials Science and Engineering A, 2011, 528(24): 7238-7246

[18]

IkedaM, KomatsuS Y, NakamuraY. Effects of Sn and Zr additions on phase constitution and aging behavior of Ti-50 mass%Ta alloys quenched from β single phase region [J]. Materials Transactions, 2004, 45(4): 1106-1112

[19]

IbrahimM K, SaudS N, HamzahE, NazimE M. Shape memory characteristics of microwave sintered porous Ti-30 at.%Ta alloy for biomedical applications [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(10): 1979-1989

[20]

BahadorA, KariyaS, UmedaJ, HamzahE, KondohK. Tailoring microstructure and properties of a superelastic Ti-Ta alloy by incorporating spark plasma sintering with thermomechanical processing [J]. Journal of Materials Engineering and Performance, 2019, 28(5): 3012-3020

[21]

ChenM, ZhangE-l, ZhangLan. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys [J]. Materials Science and Engineering C, 2016, 62: 350-360

[22]

LiW-r, XieX-b, ShiQ-s, ZengH-y, OuyangY-s, ChenY-ben. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli [J]. Applied Microbiology and Biotechnology, 2010, 85(4): 1115-1122

[23]

ZhengY F, ZhangB B, WangB L, WangY B, LiL, YangQ B, CuiL S. Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag [J]. Acta Biomaterialia, 2011, 7(6): 2758-2767

[24]

XuJ L, BaoL Z, LiuA H, JinX J, TongY X, LuoJ M, ZhongZ C, ZhengY F. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering [J]. Materials Science and Engineering C, 2015, 46: 387-393

[25]

YangD-h, GuoZ-m, ShaoH-p, LiuX-t, JiYe. Mechanical properties of porous Ti-Mo and Ti-Nb alloys for biomedical application by gelcasting [J]. Procedia Engineering, 2012, 36: 160-167

[26]

MourM, DasD, WinklerT, HoenigE, MielkeG, MorlockM M, SchillingA F. Advances in porous biomaterials for dental and orthopaedic applications [J]. Materials, 2010, 3(5): 2947-2974

[27]

GeethaM, SinghA K, AsokamaniR, GogiaA K. Ti based biomaterials, the ultimate choice for orthopaedic implants — A review [J]. Progress in Materials Science, 2009, 54(3): 397-425

[28]

NagelsJ, StokdijkM, RozingP M. Stress shielding and bone resorption in shoulder arthroplasty [J]. Journal of Shoulder and Elbow Surgery, 2003, 12(1): 35-39

[29]

NiinomiM. Metallic biomaterials [J]. Journal of Artificial Organs, 2008, 11(3): 105-110

[30]

HeyJ C, JardineA P. Shape memory TiNi synthesis from elemental powders [J]. Materials Science and Engineering A, 1994, 188(12): 291-300

[31]

GreenS M, GrantD M, KellyN R. Powder metallurgical processing of Ni-Ti shape memory alloy [J]. Powder Metallurgy, 1997, 40(1): 43-47

[32]

MorrisD G, MorrisM A. NiTi intermetallic by mixing, milling and interdiffusing elemental components [J]. Materials Science and Engineering A, 1989, 110: 139-149

[33]

VajpaiS K, DubeR K, SangalS. Application of rapid solidification powder metallurgy processing to prepare Cu-Al-Ni high temperature shape memory alloy strips with high strength and high ductility [J]. Materials Science and Engineering A, 2013, 570: 32-42

[34]

PortierR A, OchinP, PaskoA, MonastyrskyG E, GilchukA V, KolomytsevV I, KovalY N. Spark plasma sintering of Cu-Al-Ni shape memory alloy [J]. Journal of Alloys and Compounds, 2013, 577: S472-S477

[35]

OghbaeiM, MirzaeeO. Microwave versus conventional sintering: A review of fundamentals, advantages and applications [J]. Journal of Alloys and Compounds, 2010, 494(12): 175-189

[36]

Bakhsheshi-RadH R, IdrisM H, Abdul-KadirM R, OurdjiniA, MedrajM, DaroonparvarM, HamzahE. Mechanical and bio-corrosion properties of quaternary Mg-Ca-Mn-Zn alloys compared with binary Mg-Ca alloys [J]. Materials & Design, 2014, 53: 283-292

[37]

ArgadeG R, KandasamyK, PanigrahiS K, MishraR S. Corrosion behavior of a friction stir processed rare-earth added magnesium alloy [J]. Corrosion Science, 2012, 58: 321-326

[38]

IqbalN, AbdulK M R, BinM N H, IqbalS, AlmasiD, NaghizadehF, BalajiH R, KamarulT. Characterization and biological evaluation of silver containing fluoroapatite nanoparticles prepared through microwave synthesis [J]. Ceramics International, 2015, 41(5): 6470-6477

[39]

KimY W, LeeY J, NamT H. Shape memory characteristics of Ti-Ni-Mo alloys sintered by Sparks plasma sintering [J]. Journal of Alloys and Compounds, 2013, 577: S205-S209

[40]

XuJ L, BaoL Z, LiuA H, JinX F, LuoJ M, ZhongZ C, ZhengY F. Effect of pore sizes on the microstructure and properties of the biomedical porous NiTi alloys prepared by microwave sintering [J]. Journal of Alloys and Compounds, 2015, 645: 137-142

[41]

BECKER W, LAMPMAN S. Fracture appearance and mechanisms of deformation and fracture [M] Failure Analysis and Prevention. ASM International, 2002: 559–586.

[42]

HonY H, WangJ Y, PanY N. Composition/phase structure and properties of titanium-niobium alloys [J]. Materials Transactions, 2003, 44(11): 2384-2390

[43]

HanM K, KimJ Y, HwangM J, SongH J, ParkY J. Effect of Nb on the microstructure, mechanical properties, corrosion behavior, and cytotoxicity of Ti-Nb alloys [J]. Materials, 2015, 8(9): 5986-6003

[44]

NaidooM, JohnsonO, SigalasI, HerrmannM. Preparation of Ti-Ta-(C, N) by mechanical alloying Ti(C, N) and TaC [J]. International Journal of Refractory Metals and Hard Materials, 2013, 37: 67-72

[45]

LiuY, LiK-y, WuH, SongM, WangW, LiN-f, TangH-ping. Synthesis of Ti-Ta alloys with dual structure by incomplete diffusion between elemental powders [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51: 302-312

[46]

NaidooM, RaethelJ, SigalasI, HerrmannM. Preparation of (Ti, Ta)-(C, N) by mechanical alloying [J]. International Journal of Refractory Metals and Hard Materials, 2012, 35: 178-184

[47]

AkinF A, ZreiqatH, JordanS, WijesundaraM B J, HanleyL. Preparation and analysis of macroporous TiO2 films on Ti surfaces for bone-tissue implants [J]. Journal of Biomedical Materials Research, 2001, 57(4): 588-596

[48]

BansiddhiA, SargeantT D, StuppS I, DunandD C. Porous NiTi for bone implants: A review [J]. Acta Biomaterialia, 2008, 4(4): 773-782

[49]

RyanG, PanditA, ApatsidisD. Fabrication methods of porous metals for use in orthopaedic applications [J]. Biomaterials, 2006, 27(13): 2651-2670

[50]

GittensR A, MclachlanT, OlivaresnavarreteR, CaiY, BernerS, TannenbaumR, SchwartzZ, SandhageK H, BoyanB D. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation [J]. Biomaterials, 2011, 32(13): 3395-3403

[51]

WassilkowskaA, Czaplicka-KotasA, BielskiA, ZielinaM. An analysis of the elemental composition of micro-samples using EDS technique [J]. Czasopismo Techniczne, 2015, 2014: 133-148

[52]

KolliR P, JoostW J, AnkemS. Phase stability and stress-induced transformations in beta titanium alloys [J]. JOM, 2015, 67(6): 1273-1280

[53]

WenM, WenC-e, HodgsonP D, LiY-cang. Mechanical property and microstructure of Ti-Ta-Ag alloy for biomedical applications [J]. Key Engineering Materials, 2012, 520: 254-259

[54]

DaviesR H, DinsdaleA T, GisbyJ A, RobinsonJ, MartinS M. MTDATA — thermodynamic and phase equilibrium software from the national physical laboratory [J]. Calphad, 2002, 26(2): 229-271

[55]

MorinagaT, MiuraI, TakaaiT. On the phase diagram of the titanium-silver system [J]. Journal of the Japan Institute of Metals and Materials, 1959, 23(2): 117-121

[56]

EremenkoV N, BuyanovY I, PanchenkoN M. Constitution diagram of the system titanium-silver [J]. Soviet Powder Metallurgy and Metal Ceramics, 1969, 8(7): 562-566

[57]

LobodyukV A. Reversibility of the martensitic transformations and shape-memory effects [J]. Uspehi Fiziki Metallov, 2016, 17(2): 89-118

[58]

YuanB, ZhengP-q, GaoY, ZhuM, DunandD C. Effect of directional solidification and porosity upon the superelasticity of Cu-Al-Ni shapememory alloys [J]. Materials & Design, 2015, 80: 28-35

[59]

ProkoshkinS, BrailovskiV, PetrzhikM, FilonovM R, SheremetyevV. Mechanocyclic and time stability of the loading-unloading diagram parameters of nanostructured Ti-Nb-Ta and Ti-Nb-Zr SMA [J]. Materials Science Forum, 2013, 738-739: 481-485

[60]

SaediSShape memory behavior of dense and porous NiTi alloys fabricated by selective laser melting [M], 2017, US, University of Kentucky

[61]

ZhouY-l, NiinomiM, AkahoriT, NakaiM, FukuiH. Comparison of various properties between titanium-tantalum alloy and pure titanium for biomedical applications [J]. Materials Transactions, 2007, 48(3): 380-384

[62]

ZhouY-l, NiinomiM, AkahoriT, FukuiH, TodaH. Corrosion resistance and biocompatibility of Ti-Ta alloys for biomedical applications [J]. Materials Science and Engineering A, 2005, 398(12): 28-36

[63]

IqbalN, KadirM R A, MahmoodN H, SalimN, FroemmingG R A, BalajiH R, KamarulT. Characterization, antibacterial and in vitro compatibility of zinc-silver doped hydroxyapatite nanoparticles prepared through microwave synthesis [J]. Ceramics International, 2014, 40(3): 4507-4513

[64]

GuptaK, SinghR P, PandeyA, PandeyA. Correction: Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli [J]. Beilstein Journal of Nanotechnology, 2020, 11: 547-549

[65]

KubackaA, DiezM S, RojoD, BargielaR, CiordiaS, ZapicoI, AlbarJ P, BarbasC, MartinsD S V A P. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium [J]. Scientific Reports, 2015, 4: 4134

[66]

LuY, HaoL, HirakawaY, SatoH. Antibacterial activity of TiO2/Ti composite photocatalyst films treated by ultrasonic cleaning [J]. Advances in Materials Physics and Chemistry, 2012, 2(4): 9-12

[67]

ChangY-y, HuangH-l, ChenH-j, LaiC-h, WenC-yuan. Antibacterial properties and cytocompatibility of tantalum oxide coatings [J]. Surface and Coatings Technology, 2014, 259193-198

[68]

SunY-s, ChangJ H, HuangH H. Using submicroporous Ta oxide coatings deposited by a simple hydrolysis-condensation process to increase the biological responses to Ti surface [J]. Surface and Coatings Technology, 2014, 259: 199-205

[69]

MengF-h, LiZ-h, LiuX-yong. Synthesis of tantalum thin films on titanium by plasma immersion ion implantation and deposition [J]. Surface and Coatings Technology, 2013, 229: 205-209

[70]

CaoH-l, MengF-h, LiuX-yong. Antimicrobial activity of tantalum oxide coatings decorated with Ag nanoparticles [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2016, 34(4): 04C102

[71]

Marambio-JonesC, HoekE M V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment [J]. Journal of Nanoparticle Research, 2010, 1251531-1551

[72]

JanardhananR, KaruppaiahM, HebalkarN, RaoT N. Synthesis and surface chemistry of nano silver particles [J]. Polyhedron, 2009, 28(12): 2522-2530

[73]

NeculaB S, VanL J P T M, FratilaapachiteiL E, ZaatS A J, ApachiteiI, DuszczykJ. In vitro cytotoxicity evaluation of porous TiO2-Ag antibacterial coatings for human fetal osteoblasts [J]. Acta Biomaterialia, 2012, 8(11): 4191-4197

[74]

LeeD, CohenR E, RubnerM F. Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles [J]. Langmuir, 2005, 21(21): 9651-9659

[75]

ReidyB, HaaseA, LuchA, DawsonK, LynchI. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications [J]. Materials, 2013, 6(6): 2295-2350

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/