Locating microseismic sources based upon L-shaped single-component geophone array: A synthetic study

Liang Ding , Qin-ya Liu , Er-gen Gao , Wei Qian , Shou-cai Sun

Journal of Central South University ›› 2020, Vol. 27 ›› Issue (9) : 2711 -2725.

PDF
Journal of Central South University ›› 2020, Vol. 27 ›› Issue (9) : 2711 -2725. DOI: 10.1007/s11771-020-4493-9
Article

Locating microseismic sources based upon L-shaped single-component geophone array: A synthetic study

Author information +
History +
PDF

Abstract

We have developed a type of L-shaped single-component geophone array as a single station (L-array station) for surface microseismic monitoring. The L-array station consists of two orthogonal sensor arrays, each being a linear array of single-component sensors. L-array stations can be used to accurately estimate the polarization of first arrivals without amplitude picking. In a synthetic example, we first use segmentally iterative ray tracing (SIRT) method and forward model to calculate the travel time and polarization of first arrivals at a set of L-array stations. Then, for each L-array station, the relative delay times of first arrivals along sensor arrays are used to estimate the polarization vector. The small errors in estimated polarization vectors show the reliability and robustness of polarization estimation based on L-array stations. We then use reverse-time ray-tracing (RTRT) method to locate the source position based on estimated polarizations at a set of L-array stations. Very small errors in inverted source location and origin time indicate the great potential of L-array stations for source localization applications in surface microseismic monitoring.

Keywords

geophone array / polarization / source location / seismic monitoring

Cite this article

Download citation ▾
Liang Ding, Qin-ya Liu, Er-gen Gao, Wei Qian, Shou-cai Sun. Locating microseismic sources based upon L-shaped single-component geophone array: A synthetic study. Journal of Central South University, 2020, 27(9): 2711-2725 DOI:10.1007/s11771-020-4493-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MagotraN, AhmedN, ChaelE. Single-station seismic event detection and location [J]. IEEE Transactions on Geoscience and Remote Sensing, 1989, 27(1): 15-23

[2]

BayerB, KindR, HoffmannM, YuanX, MeierT. Tracking unilateral earthquake rupture by P-wave polarization analysis [J]. Geophysical Journal International, 2012, 188(3): 1141-1153

[3]

HirabayashiN. Real-time event location using model-based estimation of arrival times and back azimuths of seismic phases [J]. Geophysics, 2016, 81(2): KS25-KS40

[4]

DingL, GaoE, LiuQ, QianW, LiuD, YangC. Reverse-time ray-tracing method for microseismic source localization [J]. Geophysical Journal International, 2018, 214(3): 2053-2072

[5]

ParkS, IshiiM. Detection of instrument gain problems based on body-wave polarization: Application to the Hi-Net array [J]. Seismological Research Letters, 2019, 90(2A): 692-698

[6]

ParkS, TsaiV C, IshiiM. Frequency-dependent p wave polarization and its subwavelength near-surface depth sensitivity [J]. Geophysical Research Letters, 2019, 46(24): 14377-14384

[7]

XuG, ZhouHPriciples of seismology [M], 1982, Beijing, Science Press(in Chinese)

[8]

VidaleJ E. Complex polarization analysis of particle motion [J]. Bulletin of the Seismological Society of America, 1986, 76(5): 1393-1405

[9]

RostS, ThomasC. Array seismology: Methods and applications [J]. Reviews of Geophysics, 2002, 40(3): 1008

[10]

ShearerP MIntroduction to seismology [M], 20092nd Ed.Cambridge, Cambridge University Press

[11]

ParkS, IshiiM. Near-surface compressional and shear wave speeds constrained by body-wave polarisation analysis [J]. Geophysical Journal International, 2018, 213: 1559-1571

[12]

AnantK S, DowlaF U. Wavelet transform methods for phase identification in three-component seismograms [J]. Bulletin of the Seismological Society of America, 1997, 87(6): 1598-1612

[13]

Galiana-MerinoJ J, Rosa-HerranzJ, JâreguiP, MolinaS, GinerJ. Wavelet transform methods for azimuth estimation in local three-component seismograms [J]. Bulletin of the Seismological Society of America, 2007, 97(3): 793-803

[14]

OhtaK, ItoY, HinoR, OhyanagiS, MatsuzawaT, ShiobaraH, ShinoharaM. Tremor and inferred slow slip associated with afterslip of the 2011 Tohoku earthquake [J]. Geophysical Research Letters, 2019, 46(9): 4591-4598

[15]

D’auriaL, GiudicepietroF, MartiniM, OraziM, PelusoR, ScarpatoG. Polarization analysis in the discrete wavelet domain: An application to volcano seismology [J]. Bulletin of the Seismological Society of America, 2010, 100(2): 670-683

[16]

DaviesD, KellyE J, FilsonJ R. Vespa process for analysis of seismic signals [J]. Nature Physical Science, 1971, 232(27): 8-13

[17]

WagnerD E, EhlersJ W, VeezhinathanJ. First break picking using neural networks [C]. SEG Technical Program Expanded Abstracts, 1990, 2005370-373

[18]

LaR M, GalluzzoD, MaloneS, MccauslandW, DelP E. Array analysis and precise source location of deep tremor in Cascadia [J]. Journal of Geophysical Research: Solid Earth, 2010, 115(6): B00A20

[19]

CristianoL, MeierT, KrügerF, KeersH, WeidleC. Teleseismic P-wave polarization analysis at the Gräfenberg array [J]. Geophysical Journal International, 2016, 20731456-1471

[20]

RossZ E, MeierM A, HaukssonE. P wave arrival picking and first-motion polarity determination with deep learning [J]. Journal of Geophysical Research: Solid Earth, 2018, 123(6): 5120-5129

[21]

JurkevicsA. Polarization analysis of three-component array data [J]. Bulletin-Seismological Society of America, 1988, 78(5): 1725-1743

[22]

FosterA, EkströmG, HjörleifsdöttirV. Arrival-angle anomalies across the USArray transportable array [J]. Earth and Planetary Science Letters, 2014, 402(C): 58-68

[23]

RouxP F, KostadinovicJ, BardainneT, RebelE, ChmielM, VanP M, MacaultR, PignotL. Increasing the accuracy of microseismic monitoring using surface patch arrays and a novel processing approach [J]. First Break, 2014, 32(7): 95-101

[24]

GerstoftP, TanimotoT. A year of microseisms in southern California [J]. Geophysical Research Letters, 2007, 34(20): 2-7

[25]

IshiiM, ShearerP M, HoustonH, VidaleJ E. Sumatra earthquake ruptures using the Hi-net array [J]. Journal of Geophysical Research: Solid Earth, 2007, 112(11): B11307

[26]

ChambersK, KendallJ M, Brandsberg-DahlS, RuedaJ. Testing the ability of surface arrays to monitor microseismic activity [J]. Geophysical Prospecting, 2010, 585821-830

[27]

DuncanP M, EisnerL. Reservoir characterization using surface microseismic monitoring [J]. Geophysics, 2010, 75(5): 75A139-75A146

[28]

VlčekJ, FischerT, VilhelmJ. Back-projection stacking of P- and S-waves to determine location and focal mechanism of microseismic events recorded by a surface array [J]. Geophysical Prospecting, 2016, 64(6): 1428-1440

[29]

WITTEN B, SHRAGGE J C. Improved microseismic event locations through large-N arrays and wave-equation imaging and inversion [C]// American Geophysical Union, Fall General Assembly 2016. abstract id. S31B-2761., 2016.

[30]

LI Ze-feng, PENG Zhi-gang, ZHU Li-jun, MCCLELLAN J. High-resolution microseismic detection and location using Large-N arrays [C]// 2017 Workshop: Microseismic Technologies and Applications. Hefei, 2017: 59–63. DOI: https://doi.org/10.1190/microseismic2017-015.

[31]

AUGER E, SCHISSELÉ-REBEL E, JIA J. Suppressing noise while preserving signal for surface microseismic monitoring: The case for the patch design [G]// SEG Technical Program Expanded Abstracts, 2013: 2024–2028. DOI: https://doi.org/10.1190/segam2013-1396.1.

[32]

SheriffR E, GeldartL PExploration seismology [M], 1995, Cambridge, Cambridge University Press

[33]

YILMAZ Ö. Seismic data analysis: Processing, inversion, and interpretation of seismic data [M]. Istanbul, Turkey, 2001. DOI: https://doi.org/10.1190/1.9781560801580.

[34]

GibbonsS J. The applicability of incoherent array processing to IMS seismic arrays [J]. Pure and Applied Geophysics, 2014, 171(3–5): 377-394

[35]

HicksE C, BungumH, RingdalF. Earthquake location accuracies in Norway based on a comparison between local and regional networks [J]. Pure and Applied Geophysics, 2001, 158(12): 129-141

[36]

LiH, ZhuL. Locating small aftershocks using a small-aperture temporary seismic array [J]. Pure and Applied Geophysics, 2011, 168(10): 1707-1714

[37]

LiB, GhoshA. Imaging rupture process of the 2015 Mw 8.3 illapel earthquake using the US seismic array [J]. Pure and Applied Geophysics, 2016, 173(7): 2245-2255

[38]

RossM P, VenkateswaraK, HagedornC A, GundlachJ H, KisselJ S, WarnerJ, RadkinsH, ShafferT J, CoughlinM W, BodinP. Low frequency tilt seismology with a precision ground rotation sensor [J]. Seismological Research Letters, 2017, 89(1): 1-14

[39]

HuaY, SarkarT K, WeinerD D. An L-shaped array for estimating 2-D directions of wave arrival [J]. IEEE Transactions on Antennas and Propagation, 1991, 39(2): 143-146

[40]

LiangJ, ZengX, WangW, ChenH. L-shaped array-based elevation and azimuth direction finding in the presence of mutual coupling [J]. Signal Processing, 2011, 91(5): 1319-1328

[41]

GuJ, ZhuW, SwamyM N S. Joint 2-D DOA estimation via sparse L-shaped array [J]. IEEE Transactions on Signal Processing, 2015, 63(5): 1171-1182

[42]

KrügerF, WeberM. The effect of low velocity sediments on the mislocation vectors of the GRF array [J]. Geophysical Journal International, 1992, 108(1): 387-393

[43]

GaoE, XuG, JiangX, LuoK, LiuT, XieD, ShiJ. Iterative ray-tracing method segment by segment under 3-D construction [J]. Oil Geophysical Prospecting, 2002, 37(1): 11

[44]

GaoE, HanU, TengJ. Fast ray tracing method in 3-D structure and its proof of positive definiteness [J]. Journal of Central South University of Technology, 2007, 141100-103

[45]

GaoE, ZhangA, HanU, SongS, ZhaiY. Fast algorithm and numerical simulation for ray-tracing in 3D structure [J]. Journal of Central South University of Technology, 2008, 15(6): 901-905

[46]

XuT, XuG, GaoE, LiY, JiangX, LuoK. Block modeling and segmentally iterative ray tracing in complex 3D media [J]. Geophysics, 2006, 71(3): T41-T51

[47]

XuT, ZhangZ, GaoE, XuG, SunL. Segmentally iterative ray tracing in complex 2D and 3D heterogeneous block models [J]. Bulletin of the Seismological Society of America, 2010, 100(2): 841-850

[48]

XuT, LiF, WuZ, WuC, GaoE, ZhouB, ZhangZ, XuG. A successive three-point perturbation method for fast ray tracing in complex 2D and 3D geological models [J]. Tectonophysics, 2014, 627: 72-81

[49]

TrojanowskiJ, EisnerL. Comparison of migration-based location and detection methods for microseismic events [J]. Geophysical Prospecting, 2017, 65(1): 47-63

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/