Multi-UAV surveillance implementation under hierarchical dynamic task scheduling architecture

Wen-di Wu , Yun-long Wu , Jing-hua Li , Xiao-guang Ren , Dian-xi Shi , Yu-hua Tang

Journal of Central South University ›› 2020, Vol. 27 ›› Issue (9) : 2614 -2627.

PDF
Journal of Central South University ›› 2020, Vol. 27 ›› Issue (9) : 2614 -2627. DOI: 10.1007/s11771-020-4486-8
Article

Multi-UAV surveillance implementation under hierarchical dynamic task scheduling architecture

Author information +
History +
PDF

Abstract

In this paper, we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles (UAVs) synchronously covers an area for monitoring the ground conditions. In this scenario, we adopt the leader-follower control mode and propose a modified Lyapunov guidance vector field (LGVF) approach for improving the precision of surveillance trajectory tracking. Then, in order to adopt to poor communication conditions, we propose a prediction-based synchronization method for keeping the formation consistently. Moreover, in order to adapt the multi-UAV system to dynamic and uncertain environment, this paper proposes a hierarchical dynamic task scheduling architecture. In this architecture, we firstly classify all the algorithms that perform tasks according to their functions, and then modularize the algorithms based on plugin technology. Afterwards, integrating the behavior model and plugin technique, this paper designs a three-layer control flow, which can efficiently achieve dynamic task scheduling. In order to verify the effectiveness of our architecture, we consider a multi-UAV traffic monitoring scenario and design several cases to demonstrate the online adjustment from three levels, respectively.

Keywords

prediction-based synchronization / dynamic task scheduling / hierarchical software architecture

Cite this article

Download citation ▾
Wen-di Wu, Yun-long Wu, Jing-hua Li, Xiao-guang Ren, Dian-xi Shi, Yu-hua Tang. Multi-UAV surveillance implementation under hierarchical dynamic task scheduling architecture. Journal of Central South University, 2020, 27(9): 2614-2627 DOI:10.1007/s11771-020-4486-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YuanY, YasaminM. To go or not to go: on energy-aware and communication-aware robotic operation [J]. IEEE Transactions on Control of Network Systems, 2014, 1(3): 218-231

[2]

KYLE C, RYAN S, SOO-HYUN Y, ZHANG Ya-wei, GEOFFREY H. Multi-UAV exploration with limited communication and battery [C]// IEEE International Conference on Robotics and Automation. IEEE, 2015: 2230–2235. DOI: https://doi.org/10.1109/ICRA.2015.7139494.

[3]

HuangW, WangY, YiX, YangX. Distributed coordination with connectivity maintenance for nonholonomic robots [J]. Computer Animation and Virtual Worlds, 2018, 29(34): e1833

[4]

CaiZ, ChangX, WangY, YiX, YangX. Distributed control for flocking and group maneuvering of nonholonomic agents [J]. Computer Animation and Virtual Worlds, 2017, 2834e1777

[5]

YangG, JimB, PierreE, PeerF, LucianoF, RobertF, NeilJ, VijayK, MarciaM, RobertM, BradleyJ, BrianS, MariarosariaT, RussellT, ManuelaV, WangZ, RobertW. The grand challenges of science robotics [J]. Science Robotics, 2018, 314eaar7650

[6]

MagnusL, KarlH. Using robot mobility to exploit multipath fading [J]. IEEE Wireless Communications, 2009, 16130-37

[7]

WU Yun-long, ZHANG Bo, YANG Shao-shi, YI Xiao-dong, YANG Xue-jun. Energy-efficient joint communication-motion planning for relay-assisted wireless robot surveillance [C]// IEEE Conference on Computer Communications. IEEE, 2017. DOI: https://doi.org/10.1109/INFOCOM.2017.8057072.

[8]

MAJA V, MEYSAM B, GREGOIRE H, DARIO F. Distributed formation control of fixed wing micro aerial vehicles for area coverage [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2015. DOI: https://doi.org/10.1109/IROS.2015.7353444.

[9]

MehrzadM, YasaminM. On the spatial predictability of communication channels [J]. IEEE Transactions on Wireless Communications, 2012, 11(3): 964-978

[10]

YIANNIS K, MICHAEL M. Distributed intermittent communication control of mobile robot networks under time-critical dynamic tasks [C]// IEEE International Conference on Robotics and Automation. IEEE, 2018. DOI: https://doi.org/10.1109/ICRA.2018.8460570.

[11]

BRIANA L, SHAMEKA D, JULIAN D, MONICA A. Using rendezvous to overcome communication limitations in multirobot exploration [C]// IEEE International Conference on Systems, Man, and Cybernetics. IEEE, 2011. DOI: https://doi.org/10.1109/ICSMC.2011.6084037.

[12]

ISAAC V, RODERICH G, ANDREAS K. Re-establishing communication in teams of mobile robots [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2018. DOI: https://doi.org/10.1109/IROS.2018.8594460.

[13]

GRADTY W, BRIAN G, PAUL D, JAMES M R, EVANGELOS A T. Best response model predictive control for agile interactions between autonomous ground vehicles [C]// IEEE International Conference on Robotics and Automation. IEEE, 2018. DOI: https://doi.org/10.1109/ICRA.2018.8462831.

[14]

BRUNO S, OUSSAMA K. Springer handbook of robotics [M]. Springer, 2016. DOI: https://doi.org/10.1007/978-3-540-30301-5.

[15]

JUAN R, LUO Shuang-qi, ZHU Ding-qiao, DU Yun-long, LIN Hong-bin, HUANG Zheng-jie, KUANG Wen-wei, KENSUKE H. Online robot introspection via wrench-based action grammars [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2017: 5429–5436. DOI: https://doi.org/10.1109/IROS.2017.8206438.

[16]

YangX, DaiH, YiX, WangY, YangS, ZhangB, WangZ, ZhouY, PengX. micros: A morphable, intelligent and collective robot operating system [J]. Robotics and Biomimetics, 2016, 3(1): 21

[17]

ANIS K, HACHEMI B, IMEN C, SAHAR T, ADEL A, MOHAMED S, MARAM M, OMAR C, YASIR J. Integration of global path planners in ROS [J]. Robot Path Planning and Cooperation, 2018: 83–102. DOI: https://doi.org/10.1007/978-3-319-77042-0_4.

[18]

KENTA T, TOSHINNORI A, VALERI K, FLORENTIN S. Simulation environment for mobile robots testing using ros and gazebo [C]// 20th International Conference on System Theory, Control and Computing. 2016: 96–101. DOI: https://doi.org/10.1109/ICSTCC.2016.7790647.

[19]

ROSEN D, JAMES K. OpenRAVE: A planning architecture for autonomous robotics [R]. Rep. CMU-RI-TR-08-34, 2008.

[20]

FILIPPO S, KRISTIN Y P. OpenMRH: A modular robotic hand generator plugin for OpenRAVE [C]// IEEE International Conference on Robotics and Biomimetics. IEEE, 2015: 1–6. DOI: https://doi.org/10.1109/ROBIO.2015.7407010.

[21]

KERSTIN D, CHRYSTOPHER L N. Imitation in animals and artifacts [M]. MIT Press, 2002. DOI: https://doi.org/10.1108/k.2003.06732gae.004.

[22]

RodneyA B. A robust layered control system for a mobile robot [J]. IEEE Journal on Robotics and Automation, 1986, 2114-23

[23]

MicheleC, PetterO. How behavior trees modularize hybrid control systems and generalize sequential behavior compositions, the subsumption architecture, and decision trees [J]. IEEE Transactions on Robotics, 2016, 33(2): 372-389

[24]

MORGAN Q, KEN C, BRIAN G, JOSH F, TULLY F, JEREMY L, ROB W, ANDREW N. ROS: An open-source robot operating system [C]// ICRA Workshop on Open Source Software, 2009.

[25]

WangY C, TsengY C. Distributed deployment schemes for mobile wireless sensor networks to ensure multilevel coverage [J]. IEEE Transactions on Parallel and Distributed Systems, 2008, 19(9): 1280-1294

[26]

ERIC W F, DALE A L, CORY D, JACK E, WILLIAM J P. Lyapunov guidance vector fields for unmanned aircraft applications [C]// American Control Conference. IEEE, 2007. DOI: https://doi.org/10.1109/ACC.2007.4282974.

[27]

LiuQ, ZhouS, GeorgiosB. Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links [J]. IEEE Transactions on Wireless Communications, 2004, 3(5): 1746-1755

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/