Microstructure and corrosion behavior of as-cast ADC12 alloy with rare earth Yb addition and hot extrusion
Jia-jia He , Hong Yan , Yong-cheng Zou , Bao-biao Yu , Zhi Hu
Journal of Central South University ›› 2020, Vol. 27 ›› Issue (6) : 1654 -1665.
Microstructure and corrosion behavior of as-cast ADC12 alloy with rare earth Yb addition and hot extrusion
The effects of rare earth ytterbium (Yb) addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The experimental results demonstrate that both the Si phase and β-Al5FeSi phase in the alloy with 0.9 wt% Yb have been remarkably refined, and the Al3Yb intermetallic compound has also been obtained. The Si, β-Al5FeSi, and rare earth phases are further refined in the alloy at 0.9 wt% Yb and hot extrusion. The results of the immersion corrosion tests and electrochemical experiments show that the corrosion current density (8.56 µA/cm2) of the alloy with 0.9 wt% Yb addition and hot extrusion is 50.6% lower than the untreated alloy (17.33 µA/cm2), and the polarization resistance (9252 Ω·cm2) was 71.3% higher than the untreated alloy (2654 Ω·cm2). The corrosion in the cathode phase in the micro-battery was refined to varying degrees attributable to the addition of Yb and hot extrusion, where the cathode reaction in the corrosion process caused a decrease of the corrosion rate.
ADC12 alloy / rare earth Yb addition / hot extrusion / microstructure / corrosion resistance
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
/
| 〈 |
|
〉 |