A brief review of innovative strategies towards structure design of practical electronic display device

Li Ma , Yun-fei Shao

Journal of Central South University ›› 2020, Vol. 27 ›› Issue (6) : 1624 -1644.

PDF
Journal of Central South University ›› 2020, Vol. 27 ›› Issue (6) : 1624 -1644. DOI: 10.1007/s11771-020-4395-x
Article

A brief review of innovative strategies towards structure design of practical electronic display device

Author information +
History +
PDF

Abstract

Display devices have significantly changed our daily life for decades, from the watches, television, to the laptop and smartphone. As the desire of advanced display device with high-resolution, long operation life and lightweight properties, several display techniques have been demonstrated. There are mainly four types of electronic display device: cathode ray tube (CRT), liquid-crystal display (LCD), organic light-emitting diode (OLED), and micro-LED. Due to the different working principles and device structures, each type of display device has its special characteristic properties. The performance of devices could be adjusted through the material selection or device design. With careful device structure regulation, not only the efficiency but also the stability would be improved. Herein, a brief review of innovative strategies towards the structure design is presented.

Keywords

innovative strategies / OLED / QLED / micro-LED / display techniques

Cite this article

Download citation ▾
Li Ma, Yun-fei Shao. A brief review of innovative strategies towards structure design of practical electronic display device. Journal of Central South University, 2020, 27(6): 1624-1644 DOI:10.1007/s11771-020-4395-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HOWSTUFFWORKS. How OLEDs work[EB/OL]. [2018-04-22]. https://electronics.howstuffworks.com/oled3.htm.

[2]

BELLIS M. Television history and the cathode ray tube [EB/OL]. [2017-04-06]. https://www.thoughtco.com/television-history-cathode-ray-tube-1991459.

[3]

VickeryR CVan Nostrand’s scientific encyclopedia [M], 2005, Germany, John Wiley & Sons Inc

[4]

CousoulisMHandbook of digital imaging [M], 2015, Germany, John Wiley & Sons, Inc

[5]

BagherA M, VahidM M A, MohsenM. A review of challenges in display technology [J]. International Journal of Electrical Components and Energy Conversion, 2017, 3(2): 26-39

[6]

LIU J, CHEN C T, CHEN C H. Introduction to organic light-emitting diode (OLED) [M]// Handbook of Digital Imaging. 2015. DOI: https://doi.org/10.1002/9781118798706.hdi022.

[7]

DengP, ZhangK, ChaoV S, MoW-j, LauK M, LiuZ-j. Full-color pixelated-addressable light emitting diode on transparent substrate (LEDoTS) micro-displays by CoB [J]. Journal of Display Technology, 2016, 12(7): 742-746

[8]

GuoW-j, ChenN, LuH, SuC-w, LinY, ChenG-l, LuY-j, ZhengL-l, PengZ-b, KuoH-c, LinC-h, WuT-z, ChenZ. The impact of luminous properties of red, green, and blue mini-LEDs on the color gamut [J]. IEEE Transactions on Electron Devices, 2019, 66(5): 2263-2268

[9]

KimH, MisunR, JamesH J C, HyunsooK, TakJ, JinJ. Ten micrometer pixel, quantum dots color conversion layer for high resolution and full color active matrix micro-LED display [J]. Journal of the Society for Information Display, 2019, 27(6): 347-353

[10]

SekiguchiH, YukimasaH, KeisukeY, AkihiroW, HiroshiO, KatsumiK. Fabrication and optical properties of regularly arranged GaN-based nanocolumns on Si substrate [J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2019, 37(3): 312-319

[11]

LeeH E, JungH S, JungH P, SeongK H, SangH P, SengH L, JaeH L, IlsukK, KeonJ L. Micro light-emitting diodes for display and flexible biomedical applications [J]. Advanced Functional Materials, 2019, 29(24): 08075

[12]

YangY, ZhengY, CaoW, XueJ, HollowayP H, QianL, TitovA, HyvonenJ, MandersJ R. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures [J]. Nat Photonics, 2015, 94259-266

[13]

KimJ H, HanC Y, LeeK H, AnK S, SongW, KimJ, OhM S, DoY R, YangH. Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer [J]. Chem Mater, 2015, 27(1): 197-204

[14]

HeG F, SchneiderO, QinD, ZhouX, MartinP, LeoK. Very high-efficiency and low voltage phosphorescent organic light-emitting diodes based on a p-i-n junction [J]. Journal of Applied Physics, 2004, 95(10): 5773-5777

[15]

UoyamaH, GoushiK, ShizuK, NomuraH, AdachiC. Highly efficient organic light-emitting diodes from delayed fluorescence [J]. Nature, 2012, 492(13): 234-238

[16]

JouJ H, KumarS, AgrawalA, LiT H, SahooS. Approaches for fabricating high efficiency organic light emitting diodes [J]. Journal of Materials Chemistry C, 2015, 3(14): 2974-3002

[17]

ZhouL, XiangH-y, ZhuY-f, OuQ-d, WangQ-k, DuJ, HuR, HuangX-b, TangJ-x. Multifunctional silver nanoparticles interlayer-modified ZnO as the electron-injection layer for efficient inverted organic light-emitting diodes [J]. ACS Applied Materials & Interfaces, 2019, 11: 9251-9258

[18]

DingL, WangJ N, NiT, ZhangF H. Low-voltage inverted organic light-emitting diodes with double-layer election injection layer based on silicon dioxide [J]. Applied Physics Letters, 2019, 115(8): 83301

[19]

LeeH, MaengM, HongJ, NajninR, MoonJ, ChoH, LeeJ, YuB, ParkY, ChoN S. Highly efficient green, blue, and white phosphorescent inverted organic light-emitting diodes by improving charge injection and balance [J]. Journal of Materials Chemistry C, 2017, 5: 9911-9919

[20]

RaoG, WangX, WangY, WangY P, YanC, ChuJ, XueL, GongC, HuangJ, XiongJ, LiY R. Two-dimensional heterostructure promoted infrared photodetection devices [J]. InfoMat, 2019, 1272-288

[21]

ShinH, LeeJ H, MoonC K, HuhJ S, SimB, KimJ J. Sky-blue phosphorescent OLEDs with 34.1% external quantum efficiency using a low refractive index electron transporting layer [J]. Advanced Materials, 2016, 28(24): 4920-4925

[22]

ZhangJ, YuY, WangP, LuoC, WuX, SunZ, WangJ, HuW D, ShenG. Characterization of atomic defects on the photoluminescence in two-dimensional materials using transmission electron microscope [J]. InfoMat, 2019, 1: 85-97

[23]

AdamovichV, CorderoS, DjurovichP I, TamayoA, ThompsonM E, DandradeB W, ForrestS R. New charge-carrier blocking materials for high efficiency OLEDs [J]. Organic Electronics, 2003, 4(2): 77-873

[24]

HuangC J, KangC C, LeeT C, ChenW R, MeenT H. Improving the color purity and efficiency of blue organic light-emitting diodes (BOLED) by adding hole-blocking layer [J]. Journal of Luminescence, 2009, 129(11): 1292-1297

[25]

JangS, HanS H, LeeJ Y, LeeY. Pyrimidine based hole-blocking materials with high triplet energy and glass transition temperature for blue phosphorescent OLEDs [J]. Synthetic Metals, 2018, 239: 43-50

[26]

JangS, LeeK H, LeeJ Y, LeeY. Dibenzo[b, d]furan and dibenzo[b,d]thiophene molecular dimers as hole blocking materials for high-efficiency and long-lived blue phosphorescent organic light-emitting diodes [J]. Journal of Materials Chemistry C, 2019, 7(31): 9599-9608

[27]

JangS, LeeK H, LeeY. Novel hole blocking materials based on 2,6-disubstituted dibenzo[b,d]furan and dibenzo[b,d]thiophene segments for high-performance blue phosphorescent organic light-emitting diodes [J]. Journal of Materials Chemistry C, 2019, 7(31): 826-834

[28]

ZhouL, ZhangH-j, DengR-p, GuoZ-y, FengJ, LiZ-f. Electroluminescence of hole block material caused by electron accumulation and hole penetration [J]. The Journal of Physical Chemistry C, 2008, 112(38): 15065-15070

[29]

JankusV, ChiangC J, DiasF, MonkmanA P. Deep blue exciplex organic light-emitting diodes with enhanced efficiency; P-type or E-type triplet conversion to singlet excitons? [J]. Advanced Materials, 2013, 25(10): 1455-1459

[30]

ZhangT-y, ChuB, LiW-l, SuZ-s, PengQ-m, ZhaoB, LuoY-s, JinF-m, YanX-w, GaoY, WuH-r, ZhangF, FanD, WangJ-b. Efficient triplet application in exciplex delayed-fluorescence OLEDs using a reverse intersystem crossing mechanism based on a delta ES-T of around zero [J]. ACS Applied Materials & Interfaces, 2014, 6(15): 11907-11914

[31]

ZhenC-g, ChenZ-k, LiuQ-d, DaiY-f, ShinC R Y, ChangS Y, KiefferJ. Fluorene-based oligomers for highly efficient and stable organic blue-light-emitting diodes [J]. Advanced Materials, 2009, 21(23): 2425

[32]

ShuzoH, YumiS, KensukeM, HiroyukiT, LeeS Y, HirokoN, NozomiN, YasumatsuM, HajimeN, ZhangQ-s, KatsuyukiS, HiroshiM, ChihayaA. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence [J]. Nature Materials, 2014, 143330-336

[33]

LeeD R, KimM, JeonS K, HwangS H, LeeC W, LeeJ Y. Design strategy for 25% external quantum efficiency in green and blue thermally activated delayed fluorescent devices [J]. Advanced Materials, 2015, 27(39): 5861-5867

[34]

CuiL-s, RuanS-b, BencheikhF, NagataR, ZhangL, InadaK, NakanotaniH. Long-lived efficient delayed fluorescence organic light-emitting diodes using n-type hosts [J]. Nature Communications, 2017, 8(1): 2250

[35]

LuP, LuM, WangH, SuiN, ShiZ, YuW W, ZhangY. Metal halide perovskite nanocrystals and their applications in optoelectronic devices [J]. InfoMat, 2019, 1: 430-459

[36]

KotadiyaN B, BlomP W M, WetzelaerG A H. Efficient and stable single-layer organic light-emitting diodes based on thermally activated delayed fluorescence [J]. Nature Photonics, 2019, 13(11): 765-769

[37]

ZouS-j, XieF-m, XieM, LiY-q, TaoC, ZhangX-h, LeeC-s, TangJ-x. High-performance dondoped blue delayed fluorescence organic light-emitting diodes featuring low driving voltage and high brightness [J]. Advanced Science, 2019, 7(3): 2508-2515

[38]

BurrowsP E, PadmaperumaA B, SapochakL S, DjurovichP, ThompsonM E. Ultraviolet electroluminescence and blue-green phosphorescence using an organic diphosphine oxide charge transporting layer [J]. Applied Physics Letters, 2006, 88(18): 2082-2089

[39]

CaiX, PadmaperumaA B, SapochakL S, VecchiP A, BurrowsP E. Electron and hole transport in a wide bandgap organic phosphine oxide for blue electrophosphorescence [J]. Applied Physics Letters, 2008, 92(8): 083308.1-3

[40]

YangX, ZhouG, WongW Y. Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices [J]. Chemical Society Reviews, 2015, 44(23): 8484-8575

[41]

ChenC-h, HsuL-c, RajamalliP, ChangY-w, WuF-i, LiaoC-y, ChiuM-j, ChouP-y, HuangM-j, ChuL-k, ChengC-h. Highly efficient orange and deep-red organic light emitting diodes with long operational lifetimes using carbazole-quinoline based bipolar host materials [J]. Journal of Materials Chemistry C, 2014, 2(30): 6183-6191

[42]

ChenC H, WuF I, TsaiY Y, ChengC H. Platinum phosphors containing an aryl-modified beta-diketonate: Unusual effect of molecular packing on photo and electroluminescence [J]. Advanced Functional Materials, 2011, 21(16): 3150-3158

[43]

ChenH F, WangT, LinS, HungW, DaiH, ChiuH, WongK, HoM, ChoT, ChenC, LeeC. Peripheral modification of 1,3,5-triazine based electron-transporting host materials for sky blue, green, yellow, red, and white electrophosphorescent devices [J]. Journal of Materials Chemistry, 2012, 22(31): 15620-15627

[44]

ChenH, JiangZ-q, GaoC-h, XuM-f, DongS-c, CuiL-s, JiS-j, LiaoL-s. Silicon-based material with spiroannulated fluorene/triphenylamine as host and exciton-blocking layer for blue electrophosphorescent devices [J]. Chemistry-A European Journal, 2013, 19(35): 11791-11797

[45]

ChenH F, YangS-j, TsaiZ-h, HungW-y, WangT C, WongK T. 1,3,5-Triazine derivatives as new electron transport-type host materials for highly efficient green phosphorescent OLEDs [J]. Journal of Materials Chemistry, 2009, 19(43): 8112-8118

[46]

HuangJ-s, PfeifferM, WernerA, BlochwitzJ, LeoK, LiuS-y. Low-voltage organic electroluminescent devices using pin structures [J]. Applied Physics Letters, 2002, 80(1): 139-141

[47]

FungM K, LiY Q, LiaoL S. Tandem organic light-emitting diodes [J]. Adv Mater, 2016, 28(47): 10381-10408

[48]

HöfleS, SchienleA, BernhardC, BrunsM, LemmerU, ColsmannA. Solution processed, white emitting tandem organic light-emitting diodes with inverted device architecture [J]. Advanced Materials, 2014, 26(30): 5155-5159

[49]

LiaoL S, KlubekK P, TangC W. High-efficiency tandem organic light-emitting diodes [J]. Applied Physics Letters, 2004, 84(2): 167-173

[50]

XieW F, ZhaoY, LiC N, LiuS Y. High-efficiency electrophosphorescent white organic light-emitting devices with a double-doped emissive layer [J]. Semiconductor Science and Technology, 2005, 20(3): 326-329

[51]

YangQ, HaoY-y, WangZ-g, LiY-f, WangH, XuB-S. Double-emission-layer green phosphorescent OLED based on LiF-doped TPBi as electron transport layer for improving efficiency and operational lifetime [J]. Synthetic Metals, 2012, 162398-401

[52]

WangQ, OswaldI W, PerezM R, JiaH, ShahubA A, QiaoQ, GnadeB E, OmaryM A. Doping-free organic light-emitting diodes with very high power efficiency, simple device structure, and superior spectral performance [J]. Advanced Functional Materials, 2014, 24(30): 4746-4752

[53]

ZhangQ, TsangD, KuwabaraH, HataeY, LiB, TakahashiT, LeeS Y, YasudaT, AdachiC. Nearly 100% internal quantum efficiency in undoped electroluminescent devices employing pure organic emitters [J]. Advanced Materials, 2015, 27(12): 2096-2100

[54]

ChenY, ChenJ, MaD, YanD, WangL. Tandem white phosphorescent organic light-emitting diodes based on interface-modified C60/pentacene organic heterojunction as charge generation layer [J]. Applied Physics Letters, 2011, 99: 103304

[55]

MERTENS R. TADF OLED emitter technology-industry status [EB/OL]. [2019-12-23]. https://www.oled-info.com/tadf-status-end-2019.

[56]

MatsumotoN, NishiyarnaM, AdachiC. Exciplex formations between tris(8-hydoxyquinolate) aluminum and hole transport materials and their photoluminescence and electroluminescence characteristics [J]. The Journal of Physical Chemistry C, 2008, 112(20): 7735-7741

[57]

OLED-INFO. Recent OLED news[EB/OL]. [2019-12-03]. https://www.oled-info.com/files/Smartphone-display-ship-ment-share-2016-2019-HIS.

[58]

ANNIS C. FPD industry capital spending, supply, demand, and manufacturing technology trends analysis-2019[EB/OL]. [2019-10-29]. https://technology.ihs.com/618506/fpd-industry-capital-spending-supply-demand-and-manufacturing-technology-trends-analysis-2019.

[59]

KirkwoodN, SinghB, MulvaneyP. Enhancing quantum dot LED efficiency by tuning electron mobility in the ZnO electron transport layer [J]. Advanced Materials Interfaces, 2016, 3(22): 1600868

[60]

KwakJ, BaeW K, LeeD, ParkI, LimJ, ParkM, ChoH, WooH, YoonD Y, CharK, LeeS, LeeC H. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure [J]. Nano Letters, 2012, 1252362-2366

[61]

DjurisicA B, LeungY H, TamK H, HsuY F, DingL, GeW K, ZhongY C, WongK S, ChanW K, TamH L, CheahK W, KwokW M, PhillipsD L. Defect emissions in ZnO nanostructures [J]. Nanotechnology, 2007, 18(9): 095702

[62]

KwakJ, LimJ, ParkM, LeeS, CharK, LeeC. High-power genuine ultraviolet light-emitting diodes based on colloidal nanocrystal quantum dots [J]. Nano Letters, 2015, 1563793-3799

[63]

LeckK S, DivayanaY, ZhaoD-w, YangX-y, AbiyasaA P, MutlugunE, GaoY, LiuS-w, TanS T, SunX-W, DemirH V. Quantum dot light-emitting diode with quantum dots inside the hole transporting layers [J]. ACS Applied Materials & Interfaces, 2013, 5(14): 6535-6540

[64]

LeeS B, YasudaT, YangM J, FujitaK, TsutsuiT. Charge carrier mobility in vacuum-sublimed dye films for light-emitting diodes studied by the time-of-flight technique [J]. Molecular Crystals and Liquid Crystals, 2010, 405(1): 67-73

[65]

LiD, LeungY H, DjurisicA B, LiuZ-t, XieM H, ShiS L, XuS J, ChanW K. Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods [J]. Applied Physics Letters, 2004, 85(9): 1601-1603

[66]

BozyigitD, YaremaO, WoodV. Origins of low quantum efficiencies in quantum dot LEDs [J]. Advanced Functional Materials, 2013, 233024-3029

[67]

LiuS Y, HoS, ChenY, SoF. Passivation of metal oxide surfaces for high-performance organic and hybrid optoelectronic devices [J]. Chemistry of Materials, 2015, 27(7): 2532-2539

[68]

MashfordB S, StevensonM, PopovicZ, HamiltonC, ZhouZ-q, BreenC, SteckelJ S, BulovicV, BawendiM G, CoesullivanS, KazlasP T. High-efficiency quantum-dot light- emitting devices with enhanced charge injection [J]. Nature Photonics, 2013, 7(5): 407-412

[69]

SunY-z, JiangY-b, PengH-r, WeiJ-l, ZhangS-d, ChenS-m. Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer [J]. Nanoscale, 2017, 9: 8962-8969

[70]

ShenH-b, LinQ-l, CaoW-r, YangC-c, ShewmonN T, WangH-z, NiuJ-z, LiL-s, XueJ-g. Efficient and long-lifetime full-color light- emitting diodes using high luminescence quantum yield thick-shell quantum dots [J]. Nanoscale, 2017, 9: 13583-13591

[71]

FuY, JiangW, KimD, LeeW, ChaeH. Highly efficient and fully solution-processed inverted light-emitting diodes with charge control interlayers [J]. ACS Applied Materials & Interfaces, 2018, 10: 17295-17300

[72]

JiW-y, TianY, ZengQ-h, QuS-n, ZhangL-g, JingP-t, WangJ, ZhaoJ-l. Efficient quantum dot light-emitting diodes by controlling the carrier accumulation and exciton formation [J]. ACS Applied Materials & Interfaces, 2014, 6: 14001-14007

[73]

KimH M, YusoffA R B M, YounJ H, JangJ. Inverted quantum-dot light emitting diodes with cesium carbonate doped aluminium-zinc-oxide as the cathode buffer layer for high brightness [J]. Journal of Materials Chemistry C, 2013, 25: 3924-3930

[74]

KimJ, JoD, LeeK J E, HanC, JoJ, YangH. White electroluminescent lighting device based on a single quantum dot emitter [J]. Advanced Materials, 2016, 28(25): 5093-5098

[75]

KimJ H, YangH. High-efficiency Cu-In-S quantum-dot-light-emitting device exceeding 7% [J]. Chemistry of Materials, 2016, 28: 6329-6335

[76]

DongY-j, CarugeJ, ZhouZ-q, HamiltonC, PopovicZ D, HoJ, StevensonM, LiuG, BulovicV, BawendiM, KazlasP T, SteckelJ S, CoesullivanS. 20.2: Ultra-bright, highly efficient, low roll-off inverted quantum-dot light emitting devices (QLEDs) [J]. SID Symposium Digest of Technical Papers, 2015, 46(1): 270-273

[77]

DaiX-l, ZhangZ-x, JinY-z, NiuY, CaoH-j, LiangX-y, ChenL-w, WangJ-p, PengX-g. Solution-processed, high-performance light-emitting diodes based on quantum dots [J]. Nature, 2014, 515(7525): 96-99

[78]

LoS S, MirkovicT, ChuangC H, BurdaC, ScholesG D. Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures [J]. Advanced Materials, 2011, 23: 180-197

[79]

LiuF, ZhangY-h, DingC, KobayashiS, IzuishiT, NakazawaN, ToyodaT, OhtaT, HayaseS, MinemotoT, YoshinoK, DaiS, ShenQ. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield [J]. ACS Nano, 2017, 11(10): 10373-10383

[80]

LiZ-c, YaoW, KongL, ZhaoY-x, LiL. General method for the synthesis of ultrastable core/shell quantum dots by aluminum doping [J]. Journal of the American Chemical Society, 2015, 137(39): 12430-12433

[81]

WangY, HeJ, ChenH, ChenJ, ZhuR, MaP, TowersA, LinY, GesquiereA, WuS, DongY. Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films [J]. Advanced Materials, 2016, 28(48): 10710-10717

[82]

SunH-z, YangZ-y, WeiM-y, SunW, LiX-y, YeS-y, ZhaoY-b, TanH-r, KynastonE L, SchonT B, YanH, LuZ-h, OzinG A, SargentE H, SeferosD S. Chemically addressable perovskite nanocrystals for light-emitting applications [J]. Advanced Materials, 2017, 29: 1701153

[83]

YangX, MutlugunE, ZhaoY, GaoY, LeckK S, MaY, KeL, TanS T, DemirH V, SunX W. Light-emitting diodes: Solution processed tungsten oxide interfacial layer for efficient hole-injection in quantum dot light-emitting diodes [J]. Small, 2014, 10(2): 246-246

[84]

CaoF, WangH-r, ShenP-y, LiX-m, ZhengY-q, ShangY-q, ZhangJ-h, NingZ-j, YangX-y. High-efficiency and stable quantum dot light-emitting diodes enabled by a solution-processed metal-doped nickel oxide hole injection interfacial layer [J]. Advanced Functional Materials, 2017, 271704278

[85]

MoonH, LeeC, LeeW, KimJ, ChaeH. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications [J]. Advanced Materials, 2019, 311804294

[86]

QianL, ZhengY, XueJ, HollowayP H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures[J]. Nature Photonics, 2011, 5543-548

[87]

KimH Y, ParkY J, KimJ, HanC J, LeeJ, KimY, GrecoT, IppenC, WedelA, JuB K, OhM S. Transparent InP quantum dot light-emitting diodes with ZrO2 electron transport layer and indium zinc oxide top electrode [J]. Advanced Functional Materials, 2016, 26(20): 3454-3461

[88]

DaiX-l, ZhangZ-x, JinY-z, NiuY, CaoH-j, LiangX-y, ChenL-w, WangJ-p, PengX-g. Solution-processed, high-performance light-emitting diodes based on quantum dots [J]. Nature, 2014, 515(7525): 96-99

[89]

ManderJ R, QianL, TitovA, HyvonenJ, TokarzscottJ, KrishnaP A, YangY-x, CaoW-r, ZhengY, XueJ-g, HollowayP H. High efficiency and ultra-wide color gamut quantum dot LEDs for next generation displays [J]. Journal of the Society for Information Display, 2015, 23(11): 523-528

[90]

WangL-s, LinJ, HuY-s, GuoX-y, LvY, TangZ-b, ZhaoJ-l, FanY, ZhangN, WangY-j, LiuX-y. Blue quantum dot light- emitting diodes with high electroluminescent efficiency [J]. ACS Applied Materials & Interfaces, 2017, 9: 38755-38760

[91]

WonY H, ChoO, KimT H, ChungD Y, KimT H, ChungH J, JangH S, LeeJ H, KimD B, JangE J. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes [J]. Nature, 2019, 575(7784): 634-638

[92]

CHENG S. Overview of micro-LED history and current developments [EB/OL]. [2016-08-05]. https://www.ledinside.com/outlook/2016/8/overview_of_micro_led_history_and_current_developments.

[93]

KangC M, LeeJ Y, ParkM, MunS, ChoiS, KimK, KimS, ShimJ, LeeD. Hybrid integration of RGB inorganic LEDs using adhesive bonding and selective area growth [J]. SID Symposium Digest of Technical Papers, 2018, 49(1): 604-606

[94]

DingK, AvrutinV, IzyumskayaN, OzgurU, MorkocH. Micro-LEDs, a manufacturability perspective [J]. Applied Sciences, 2019, 9(6): 1206

[95]

UmJ G, JeongD Y, JungY, MoonJ K, JungY H, KimS, KimS H, LeeJ S, JangJ. Active-matrix GaN μ-LED display using oxide thin-film transistor backplane and flip chip LED bonding [J]. Advanced Electronic Materials, 2019, 531800617

[96]

JinS X, ShakyaJ, LinJ Y, JiangH X. Size dependence of III-nitride microdisk light-emitting diode characteristics [J]. Applied Physics Letters, 2001, 78223532-3534

[97]

TianP-f, MckendryJ J D, GongZ, GuilhabertB, WatsonI, GuE, ChenZ-z, ZhangG-y, DawsonM D. Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes [J]. Applied Physics Letters, 2012, 101(23): 231110

[98]

AsadM, LiQ, SachdevM, WongW. S. Size-dependent optoelectrical properties of 365 nm ultraviolet light-emitting diodes [J]. Nanotechnology, 2019, 3050504001

[99]

BourimE M, HanJ I. Size effect on negative capacitance at forward bias in InGaN/GaN multiple quantum well-based blue LED [J]. Electronic Materials Letters, 2016, 12167-75

[100]

TianW, SunH, ChenL, WangyangP, ChenX, XiongJ, LiL. Low-dimensional nanomaterial/Si heterostructure-based photodetectors [J]. InfoMat, 2019, 1: 140-163

[101]

OliverF, DaamiA, LicitraC, TemplierF. Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: A size effect study [J]. Applied Physics Letters, 2017, 111(2): 22104

[102]

ZhaoX, XuH, WangZ, LinY, LiuY. Memristors with organic-inorganic halide perovskites [J]. InfoMat, 2019, 1: 183-210

[103]

HorngR H, ChienH Y, ChenK Y, TsengW Y, TsaiY T, TarntairF. Development and fabrication of AlGaInP-based flip-chip micro-LEDs [J]. IEEE Journal of the Electron Devices Society, 2018, 6475-479

[104]

TsengM C, ChenC L, LaiN K, ChenS I, HsuT C, PengY R, HorngR H. P-side-up thin-film AlGaInP-based light emitting diodes with direct ohmic contact of an ITO layer with a GaP window layer [J]. Optics Express, 2014, 22(S7): A1862-A1867

[105]

MitchellB, DierolfV, GregorkiewiczT, FujiwaraY. Perspective: Toward efficient GaN-based red light emitting diodes using europium doping [J]. Journal of Applied Physics, 2018, 123(16): 160901

[106]

KimR H, KimD H, XaoJ, KimB H, ParkSII, PanilaitisB, GhaffariR, YaoJ, LiM, LiuZ J, MalyarchukV, KimD G, LeA P, NuzzoR G, KaplanD L, OmenettoF G, HuangY-g, KangZ, RogersJ A. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics [J]. Nature Materials, 2010, 911929-937

[107]

KonoplevS S, BulashevichK A, KarpovS Y. From large-size to micro-LEDs: Scaling trends revealed by modeling [J]. Physica Status Solidi A, 2017, 215: 1700508

[108]

JinS X, LiJ, LiJ Z, JiangH X. GaN microdisk light emitting diodes [J]. Applied Physics Letters, 2000, 76(5): 631-633

[109]

JacobsH O, TaoA R, SchwartzA, GraciasD H, WhitesidesG M. Fabrication of a cylindrical display by patterned assembly [J]. Science, 2002, 296(5566): 323-325

[110]

JiangH X, JinS X, LiJ, ShakyaJ, LinJ Y. III-nitride blue microdisplays [J]. Applied Physics Letters, 2001, 78(9): 1303-1305

[111]

KnueselR J, JacobsH O. Self-assembly of microscopic chiplets at a liquid-liquid-solid interface forming a flexible segmented monocrystalline solar cell [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(3): 993-998

[112]

TanC-w, XuS-p, TanZ-j, SunL-z, WuJ-x, LiT-r, PengH-l. Exploitation of Bi2O2Se/graphene van der Waals heterojunction for creating efficient photodetectors and short-channel field-effect transistors [J]. InfoMat, 2019, 1390-395

[113]

KramesM R, Ochiai-HolcombM, HöflerG E, Carter-ComanC, ChenE I, TanI-H, GrillotP, GardnerN F, ChuiH C, HuangJ W, StockmanS A, KishF A, CrafordM G. High-power truncated-inverted-pyramid(AlxGa1−x)(0.5) In0.5P/ GaP light-emitting diodes exhibiting>50% external quantum efficiency [J]. Applied Physics Letters, 1999, 75(3938): 2365-2367

[114]

LiH-j, WongM S, KhouryM, BonefB, ZhangH-j, ChowY-c, LiP-p, KearnsJ A, TaylorA A, MierryP D, HassanZ, NakamuraS J, DenbaarsS P. Study of efficient semipolar (11-22) InGaN green micro-light-emitting diodes on high-quality(11-22) GaN/sapphire template [J]. Optics Express, 2019, 27(17): 24154-24160

[115]

HerrnsdorfJ, MckendryJ J D, ZhangS, XieE-y, FerreiraR, MassoubreD, ZuhdiA W M, HendersonR, UnderwoodI, WatsonS, KellyA E, GuE, DawsonM D. Active-matrix GaN micro light-emitting diode display with unprecedented brightness [J]. IEEE Transactions on Electron Devices, 2015, 62(6): 1918-1925

[116]

SohM Y, NgW X, TeoT H, SelvarajS L, PengL, DisneyD, ZouQ, YeoK S. Design and characterization of micro-LED matrix display with heterogeneous integration of GaN and BCD technologies [J]. IEEE Transactions on Electron Devices, 2019, 10(66): 4221-4227

[117]

HsuY P, ChangS J, SuY K, ChangC S, SheiS C, LinY C, KuoC H, WuL W, ChenS C. InGaN/GaN light-emitting diodes with a reflector at the backside of sapphire substrates [J]. Journal of Electronic Materials, 2003, 32(5): 403-406

[118]

ZhouS-j, XuH-h, LiuM-l, LiuX-t, ZhaoJ, LiN, LiuS. Effect of dielectric distributed bragg reflector on electrical and optical properties of GaN-based flip-chip light-emitting diodes [J]. Micromachines, 2018, 9(12): 650

[119]

DalyS, KunkelT, SunX, FarrellS, CrumP. Distinguished paper: Viewer preferences for shadow, diffuse, specular, and emissive luminance limits of high dynamic range displays [J]. Sid Symposium Digest of Technical Papers, 2013, 441563-566

[120]

EvenA, LavalG, LedouxO, FerretP, SottaD, GuiotE, LevyF, RobinI C, DussaigneA. Enhanced in incorporation in full InGaN heterostructure grown on relaxed InGaN pseudo-substrate [J]. Applied Physics Letters, 2017, 110262103

[121]

DASH S. DisplayWeek 2019-The race for next generation innovation[EB/OL]. [2019-5-30]. https://www.displaydaily.com/article/display-daily/displayweek-2019-the-race-for-next-generation-innovation.

[122]

UmJ G, JeongDY, JungY, MoonJ K, JungY H, KimS, KimS H, LeeJ S, JangJ. Active-matrix GaN μ-LED display using oxide thin-film transistor backplane and flip chip LED bonding [J]. Adv Electron Mater, 2019, 3(5): 617-635

[123]

SrivastavaA K, ZhangW, SchneiderJ, RogachA L, ChigrinovV G, KwokH S. Photoaligned nanorod enhancement films with polarized emission for liquid-crystal-display applications [J]. Advanced Materials, 2017, 291701091

[124]

LuoZ, ChenY, WuS T. Wide color gamut LCD with a quantum dot backlight [J]. Optics Express, 2013, 4(21): 26269-26284

[125]

LiaoH, ZhaoM, ZhouY, MolokeevM S, LiuQ, ZhangQ, XiaZ. Polyhedron transformation toward stable narrow-band green phosphors for wide-color-gamut liquid crystal display [J]. Advanced Functional Materials, 2019, 29(30): 190-198

[126]

BozyigitD, WoodV, ShirasakiY, BulovicV. Study of field driven electroluminescence in colloidal quantum dot solids [J]. Journal of Applied Physics, 2012, 11(111): 1-7

[127]

ZhuR-d, LuoZ-y, ChenH-w, DongY-j, WuS. Realizing Rec 2020 color gamut with quantum dot displays [J]. Optics Express, 2015, 23(18): 23680-23693

[128]

ChenH-w, ZhuR-d, HeJ, DuanW, HuW, LuY-q, LiM-c, LeeS L, DongY-j, WuS T. Going beyond the limit of an LCD’s color gamut [J]. Light Science & Applications, 2017, 6(9): e17043

[129]

SU P. LCD TV panel shipments forecasted to decrease by record 7 percent in 2020 to total 265 million [EB/OL]. [2019-12-18]. https://technology.ihs.com/619752/lcd-tv-panel-shipments-%20forecasted-to-decrease-by-record-7-percent-in-2020-to-total-265-million.

[130]

CHEN Y N. Display manufacturers to quit LCD; mini LED or OLED might take over to be the next leading display technology [EB/OL]. [2019-12-5]. https://www.ledinside.com/news/2019/12/display_technology_miniled_lcd.

[131]

ChanmgC C, ChenJ F, HwangS W, ChenC H. Highly efficient white organic electroluminescent devices based on tandem architecture [J]. Applied Physics Letters, 2005, 8725253501

[132]

KimT I, MccallJ G, JungY H, HuangX, SiudaE R, LiY-h, SongJ-z, SongY-m, PaoH A, KimR H, LuC-f, LeeS D, SongI S, ShinG C, Ai-HasanR, KimS, TanM P, HuangY-g, OmenettoF G, RogersJ A, BruchasM R. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics [J]. Science, 2013, 340211-216

[133]

WuT-z, SherC-w, LinY, LeeC-f, LiangS-j, LuY-j, HuangC S-w, GuoW-j, KuoH-c, ChenZ. Mini-LED and micro-LED: Promising candidates for the next generation display technology [J]. Applied Sciences, 2018, 8(9): 1557

[134]

XieE, StonehouseM, FerreiraR, MckendryJ J D, HerrnsdorfJ, HeX-y, RajbhandariS J, ChunH, JalajakumariA V N, AlmerO, FaulknerG, WastonI, GuE, HendersonR, ObrienD, DawsonM D. Design, fabrication, and application of GaN-based micro-LED arrays with individual addressing by N-electrodes [J]. IEEEP hotonics Journal, 2017, 961-11

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/