Order of sphalerite and galena precipitation: A case study from lead-zinc deposits in southwest China

Yan Zhang , Run-sheng Han , Ping-tang Wei

Journal of Central South University ›› 2020, Vol. 27 ›› Issue (1) : 288 -310.

PDF
Journal of Central South University ›› 2020, Vol. 27 ›› Issue (1) : 288 -310. DOI: 10.1007/s11771-020-4296-z
Article

Order of sphalerite and galena precipitation: A case study from lead-zinc deposits in southwest China

Author information +
History +
PDF

Abstract

Most of the lead and zinc deposits in Southwest China, are characterized by mineral zoning, which is especially true for the Huize and Zhaotong deposits. The mineral assemblage zoning is consistent for both horizontal and vertical zoning, from the base (center) of the ore body to the top (outermost), the mineral zones are as follows. coarse-grained pyrite and a little puce sphalerite; I-2: brown sphalerite, galena, and ferro-dolomite; I-3: galena, sandy beige and pale yellow sphalerite, and calcite; and I-4: fine-grained pyrite, dolomite, and calcite. Among them, sphalerite is the landmark mineral of different zoning. From I-1 to I-3, the color of sphalerite changes from dark to light, its crystalline size changes from coarse to fine, and its structure changes from disseminated to veinlet. This mineral zoning is seen not only on a microscopic scale, but is also clear on a mesoscopic and macroscopic scale. It is caused by the order of the sphalerite and galena precipitation. We studied the metallic minerals and fluid inclusions using a thermodynamic phase diagram method, such as

lgfO2lgfS2
,
pHlgfO2
, pH−lg[Pb2+] and pH−lg[HS], discussed the constraints on the order of the sphalerite and galena precipitation in the migration and precipitation process of lead and zinc under different pH values, oxygen fugacity, sulfur fugacity, and ionic activity. We also explain the formation mechanism and propose that the main controlling factor of the order of the sphalerite and galena precipitation is sulfur fugacity.

Keywords

precipitation order / thermodynamic phase diagram / mineral zoning / lead and zinc deposit / southwest of China

Cite this article

Download citation ▾
Yan Zhang, Run-sheng Han, Ping-tang Wei. Order of sphalerite and galena precipitation: A case study from lead-zinc deposits in southwest China. Journal of Central South University, 2020, 27(1): 288-310 DOI:10.1007/s11771-020-4296-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GarrelsR M. The Mississippi valley type lead-zinc deposits and the problem of mineral zoning [J]. Econ Geol, 1941, 36: 729-744

[2]

MiyazawaT. Regional lateral zoning of the Mesozoic to early Tertiary endogenic lead-zinc and copper deposits in East Asia and its geological background, with some comments on the drifting of the Japanese Islands [J]. Shigen-Chishitsu, 1985, 35: 31-39

[3]

WeiA-y, XueC-d, HongT, LuoD-f, LiL-r, WangF, ZhouG-m, LiuX. The alteration-mineralization zoning model for the Maoping lead-zinc deposit, northeastern Yunnan Province: Evidence from alternation-lithofacies mapping [J]. Acta Petrologica Et Mineralogica, 2012, 31(5): 723-735(in Chinese)

[4]

WuG-f, LiJ, WangB, LiX-y. Geochemical characteristics of primary halo of low grade lead-zinc at Jiazitaigou [J]. Geology of Chemical Minerals, 2016, 38(1): 7-15(in Chinese)

[5]

BealesF W, JacksonS A. Precipitation of lead-zinc ores in carbonate reservoirs as illustrated by Pine Point ore field, Canada [J]. T I Min Metall B, 1966, 75: 278-285

[6]

SkinnerB J. Precipitation of Mississippi Valley-type ores: A possible mechanism. In: J.S. Brown, Genesis of Stratiform Lead-Zinc-Barite-Fluorite Deposits (Mississippi Valley-type Deposits) [J]. Economic Geology, 1967, 3: 363-370

[7]

HELGESON H C. A chemical and thermodynamic model of ore deposition in hydrothermal systems [C]// MORGAN B A. Symposium: Mineralog. Soc America SPEC, 1970: 155–186.

[8]

AndersonG M. The hydrothermal transport and deposition of galena and Sphalerite near 100 °C [J]. Economic Geology, 1973, 68(4): 480-492

[9]

AndersonG M. Precipitation of Mississippi Valley-Type ores [J]. Economic Geology, 1975, 70(5): 937-942

[10]

BealesF W. Precipitation mechanisms for Mississippi Valley-type ore deposits [J]. Economic Geology, 1975, 70(5): 943-948

[11]

HagniR D, TrancyngerT C. Sequence of deposition of the ore minerals at the Magmont Mine, Viburnum Trend, Southeast Missouri [J]. Economic Geology, 1977, 72(3): 451-464

[12]

BARNES H L. Geochemistry of hydrothermal ore deposits [M]. John Wiley and Son, 1997.

[13]

GiordanoT H, BarnesH L. Lead transport in Mississippi valley-type ore solutions [J]. Economic Geology, 1981, 76(8): 2200-2211

[14]

AppoldM S, WenzZ J. Composition of ore fluid inclusions from the viburnum trend, southeast Missouri District, United States: Implications for transport and precipitation mechanisms [J]. Economic Geology, 2011, 106(1): 55-78

[15]

WilkinsonJ.J.. Sediment-Hosted Zinc–Lead Mineralization. Treatise on Geochemistry, 2014219249

[16]

BayotD, DevillersM. Peroxo complexes of niobium(v) and tantalum(v) [J]. Coordination Chemistry Reviews, 2006, 250: 2610-2626

[17]

LiuW, EtschmannB, ForanG, ShelleyM, BruggerJ. Deriving formation constants for aqueous metal complexes from XANES spectra: Zn2+ and Fe2+ chloride complexes in hypersaline solutions [J]. American Mineralogist, 2007, 92(56): 761-770

[18]

AndriS. Iron(III) hydrolysis and solubility at 25 °C [J]. Environmental Science & Technology, 2007, 41(17): 6117-23

[19]

AntignanoA, ManningC E. Rutile solubility in H2O, H2O-SiO2, and H2O-NaAlSi3O8 fluids at 0.7–2.0 GPa and 700–1000 °C: Implications for mobility of nominally insoluble elements [J]. Chemical Geology, 2008, 255(s12): 283-293

[20]

Williams-JonesA E, BowellR J, MigdisovA A. Gold in solution [J]. Elements, 2009, 5(5): 281-287

[21]

YardleyB W D, BodnarR J. Fluids in the Continental Crust [J]. Geochemical Perspectives, 2014, 3(1): 1-127

[22]

AndersonA J, MayanovicR A, ChouY-m, BassettW AXAFS investigations of zinc halide complexes up to supercritical conditions [M], 2000, Ottawa, ON: NRC Research Press

[23]

BasukiN I. A review of fluid inclusion temperatures and salinities in Mississippi Valley-type Zn-Pb deposits: Identifying thresholds for metal transport [J]. Exploration & Mining Geology, 2002, 11(1-4): 1-17

[24]

HarrisD J, BrodholtJ P, ShermanD M. Zinc complexation in hydrothermal chloride brines: Results from ab initio molecular dynamics calculations [J]. Journal of Physical Chemistry A, 2003, 107(7): 614-619

[25]

LeachD L, SangsterD F, KelleyK D, LargeR R, GarvenG, AllenC R, GutzmerJ, WaltersS. Sediment-hosted lead-zinc deposits: A global perspective [J]. Econ Geol, 2005, 100: 561-607

[26]

TagirovB R, SuleimenovO M, SewardT M. Zinc complexation in aqueous sulfide solutions: Determination of the stoichiometry and stability of complexes via ZnS (cr) solubility measurements at 100 °C and 150 bars [J]. Geochimica Et Cosmochimica Acta, 2007, 71(20): 4942-4953

[27]

TagirovB R, SewardT M. Hydrosulfide/sulfide complexes of zinc to 250 °C and the thermodynamic properties of sphalerite [J]. Chemical Geology, 2010, 269(34): 301-311

[28]

TagirovB, ZotovA, SchottJ, SuleimenovO, KorolevaL. A potentiometric study of the stability of aqueous yttrium-acetate complexes from 25 to 175 °C and 1–1000 bar [J]. Geochimica Et Cosmochimica Acta, 2007, 71(7): 1689-1708

[29]

GiordanoT H, BarnesH L. Ore solution chemistry VI; PbS solubility in bisulfide solutions to 300 °C [J]. Economic Geology, 1979, 74(7): 1637-1646

[30]

HamannR J, AndersonG M. Solubility of galena in sulfur-rich nacl solutions [J]. Economic Geology, 1978, 73(1): 96-100

[31]

BarrettT J, AndersonG M. The solubility of sphalerite and galena in NaCl brines [J]. Economic Geology, 1982, 77(8): 1923-1933

[32]

SewardT M. The formation of lead(II) chloride complexes to 300 °C: A spectrophotometric study [J]. Geochimica Et Cosmochimica Acta, 1984, 48(1): 121-134

[33]

RuayaJ R, SewardT M. The stability of chlorozinc(II) complexes in hydrothermal solutions up to 350° C [J]. Geochimica Et Cosmochimica Acta, 1986, 50(5): 651-661

[34]

BourcierW L, BarnesH L. Ore solution chemistry: VII. Stabilities of chloride and bisulphide complexes of zinc to 350 °C [J]. Economic Geology, 1987, 82(7): 1839-1863

[35]

BarrettT J, AndersonG M. The solubility of sphalerite and galena in 1–5 m NaCl solutions to 300 °C [J]. Geochimica Et Cosmochimica Acta, 1988, 52(4): 813-820

[36]

ShangL-b, FanW-l, HuR-z, DengH-l. A thermodynamic study on paragensis and separation of silver, lead and zinc in hydrothermal solutions [J]. Acta Mineralogica Sinica, 2004, 24(1): 81-86(in Chinese)

[37]

ShangL-b, HuR-z, FanW-l. The mechanisms of paragenesis and separation of silver, lead and zinc in hydrothermal solutions [J]. Chinese Journal of Geochemistry, 2005, 24(1): 82-89 in Chinese)

[38]

NriaguJ O. Studies in the system pbs-nacl-h2s-h2o: Stability of lead(II) thiocomplexes at 90 °C [J]. Chemical Geology, 1971, 8: 299-310

[39]

NriaguJ O, AndersonG M. Stability of the lead (II) chloride complexes at elevated temperatures [J]. Chemical Geology, 1971, 7: 171-184

[40]

LEACH D L, TAYLOR R D. A deposit model for mississippi valley-type lead-zinc ores [R]. Chapter A of mineral deposit models for resource assessment: Scientific Investigations Report. U.S.geological Survey, 2010. http://minerals.cr.usgs.gov/.

[41]

LeachD L, SangsterD F. Mississippi Valley-Type lead-zinc deposits [J]. Geological Association of Canada Special Paper, 1993, 40: 289-314

[42]

HanR-s, ChenJ, HuangZ-lDynamics of tectonic ore-forming process and localization-prognosis of concealed orebodies-As exemplified by the huize super-large Zn-Pb-(Ag-Ge) District, Yunnan [M], 2006, Beijing, China, Beijing Science Press(in Chinese)

[43]

HanR-s, HuY-z, WangX-k, HouB-h, HuangZ-l, ChenJ, WangF, WuP, LiB, WangH-j, DongY, LeiL. Mineralization model of rich Ge-Ag-bearing Zn-Pb polymetallic deposit concentrated district in Northeastern Yunnan, China [J]. Acta Geologica Sinica, 2012, 86(2): 280-293(in Chinese)

[44]

HanR-s, LiuC-q, HuangZ-l, ChenJ, MaD-y, LeiL, MaG-s. Geological features and origin of the Huize carbonate-hosted Zn-Pb-(Ag) district, Yunnan [J]. Ore Geology Reviews, 2007, 31: 360-383

[45]

HanR-s, WangF, HuY-z, WangX-k, RenT, QiuW-l, ZhongK-h. Metallogenic tectonic dynamics and chronology constrains on the Huize-Typ (HZT) germanium-rich silver-zinc-lead deposits [J]. Geotectonic et Metallogenia, 2014, 38(4): 758-771(in Chinese)

[46]

DAI Zi-xi. The distributions, types and rules of exploration of lead and zinc all over the world [J]. World Nonferrous Metals, 2005(3): 15–23. (in Chinese)

[47]

XieJ-rA discussion on the deposits classify [M], 1963, Beijing, China, Science Press(in Chinese)

[48]

TuG-zGeochemical of strata bound ore deposits in China [M], 1984, Beijing, China, Science Press(in Chinese)

[49]

HanR-s, LiuC-q, HuangZ-l, MaD-y, LiY, HuB. Sources of ore-forming fluid in huize Zn-Pb-(Ag-Ge) district, Yunnan, China [J]. Acta Geologica Sinica, 2004, 78(2): 583-591

[50]

HuangZ-l, ChenJ, HanR-sGeochemistry and ore genesis of Huize super-large lead-zinc deposit, Yunnan Province, concurrently discuss the relationship between Emeishan basalt and lead-zinc deposits [M], 2004, Beijing, China, Geological Publishing House(in Chinese)

[51]

LiuH-c, LinW-dMetallogenic rules of Zn-Pb-(Ag) deposits in Northeastern Yunnan [M], 1999, Kunming, China, Yunnan University Publishing House(in Chinese)

[52]

ZhangC-qThe genetic model of mississippi valley-type deposits in the boundary area of Sichuan, Yunnan and Guizhou Provinces, China [D], 2008, Beijing, China, Chinese Academy of Geological Sciences: 6798(in Chinese)

[53]

ZhouJ-x, LuoK, WangX-c, WildesA, WuT, HuanZ-l, CuiY-l, ZhaoJ-x. Ore genesis of the fule Pb-Zn deposit and its relationship with the Emeishan Large Igneous Province: Evidence from mineralogy, bulk C-O-S and in situ S-Pb isotopes [J]. Gondwana Research, 2018, 54: 161-179

[54]

ZhouJ-x, XiangZ-z, ZhouM-f, FengY-x, LuoK, HuangZ-l, WuT. The giant Upper Yangtze Pb-Zn province in SW China: Reviews, new advances and a new genetic model [J]. Journal of Asian Earth Sciences, 2018, 154: 280-315

[55]

ZhouJ-x, HuangZ-l, ZhouM-f, ZhuX-k, PhilippeM. Zinc, sulfur and lead isotopic variations in carbonate-hosted Pb-Zn sulfide deposits, southwest China [J]. Ore Geology Reviews, 2014, 58(3): 41-54

[56]

ZhouJ-X, HuangZ-l, LvZ-c, ZhuX-K, JinZ-g, HassanM. Geology, isotope geochemistry and ore genesis of the Shanshulin carbonate-hosted Pb-Zn deposit, southwest China [J]. Ore Geology Reviews, 2014, 63(1): 209-225

[57]

ZhouJ-x, HuangZ-l, ZhouM-f, LiX-b, JinZ-g. Constraints of C-O-S-Pb isotope compositions and Rb-Sr isotopic age on the origin of the Tianqiao carbonate-hosted Pb-Zn deposit, SW China [J]. Ore Geology Reviews, 2013, 53: 77-92

[58]

ZhouJ-x, HuangZ-l, BaoG-p, GaoJ-g. Sources and thermo-chemical sulfate reduction for reduced sulfur in the hydrothermal fluids, southeastern SYG Pb-Zn metallogenic province, SW China [J]. Journal of Earth Science, 2013, 24(5): 759-771

[59]

ZhangYan, HanRunsheng, WeiPingtang, WangLei. Identification of Two Types of Metallogenic Fluids in the Ultra-Large Huize Pb–Zn Deposit, SW China. Geofluids, 2017, 2017: 1-22

[60]

ZouH-j, HanR-s, HuB. New evidences of origin of metallogenic materials in the Maoping Pb-Zn ore deposit, Zhaotong, Yunnan, R-factor analysis results of trace elements in NE-extending fractural tectonited [J]. Geology and Prospecting, 2004, 40(5): 43-48(in Chinese)

[61]

MarieJ S, KeslerS E. Iron-rich and iron-poor Mississippi Valley-Type mineralization, metaline district, Washington [J]. Econ Geol, 2000, 95(5): 1091-1106

[62]

SavardM M, ChiG, SamiT, Williams-JonesA E, LeighK. Fluid inclusion and carbon, oxygen, and strontium isotope study of the Polaris Mississippi Valley-type Zn-Pb deposit, Canadian Arctic Archipelago: Implications for ore genesis [J]. Mineralium Deposita, 2000, 35(6): 495-510

[63]

GrandiaF, CanalsA, CardellachE, BanksD A, PeronaJ. Origin of ore-forming brines in sedimenthosted Zn-Pb deposits of the Basque-Cantabrian Basin, Northern Spain [J]. Econ Geol, 2003, 98(7): 1397-1411

[64]

HanR-s, LiB, NiP, QiuW-l, WangX-d, WangT-g. Infrared micro-thermometry of fluid inclusions in sphalerite and geological significance of the Huize super-large Zn-Pb-(Ge-Ag) deposit, Yunnan Province [J]. Journal of Jilin University: Earth Science Edition, 2016, 46(1): 91-104(in Chinese)

[65]

ZhangY, HanR-s, WeiP-t, QiuW-l. Fluid Inclusion Features and physical and chemical conditions of the ore-forming fluid in Kuangshanchang Pb-Zn Deposit, Huize, Yunnan [J]. Journal of Jilin University: Earth Science Edition, 2017, 2017, 47(3): 719-733(in Chinese)

[66]

LinZ-x, BaiZ-h, ZhangZ-rThe thermodynamic manual book of minerals and related compounds [M], 1985, Beijing, China, Science Press(in Chinese)

[67]

LARGE R R, BULL S W, MCGOLDRICK P J, WALTERS S G. Stratiform and strata-bound Zn-Pb-Ag deposits in Proterozoic Sedimentary Basins, Northern Australia [C]//Economic Geology, 2005, 100th Anniversary Volume: 931–963. http://www.segweb.org/journal.htm.

[68]

ZhangC-s, WangE-d, SongJ-c, QiH-y, LiP-f. Zonation of the Skarn-type of polymetal deposit in Huanren, Liaoning province [J]. Geology & Resources, 2009, 18(1): 23-26(in Chinese)

[69]

LuW-j, KongX-c, LanX-j, ZhangL-j, LianS-t, XinW. Geochemical metallogenic mechanism of the deep Xiangkuang Deposit in the Qixia Area of Shandong Province [J]. Geology & Exploration, 2016, 31(2): 89-96(in Chinese)

[70]

ZhaoG-b, YangH-q, RenH-n, XieX, JiaJ. Discussion on some problems about baiyinchang copper-polymetallic orefield in north Qilian [J]. Acta Geologica Sinica, 2016, 90(10): 2863-2873(in Chinese)

[71]

SongZ-g. The environments of formation of the Baiyinchang massive sulfide deposit and the implication of its origin [J]. Geological Review, 1982, 28(4): 335-343(in Chinese)

[72]

ZhengY, ZhangL, ChenY-j, HollingsP, ChenH-y. Metamorphosed Pb-Zn-(Ag) ores of the Keketale VMS deposit, Xinjiang: Evidence from ore textures, fluid inclusions, geochronology and pyrite compositions [J]. Ore Geology Reviews, 2013, 54: 167-180

[73]

ZhengY, ZhangL, GuoZ-l. The zircon LA-ICP-MS U-Pb and biotite 40Ar/39Ar geochronology, and implications for genesis of the Tiemuert Pb-Zn-Cu deposit, Xinjiang [J]. Acta Petrologica Sinica, 2013, 29(1): 191-204

[74]

ZhengY, ZhangL, LiD-f, ArgyriosK, ChenY-j. Genesis of the Dadonggou Pb-Zn deposit in Kelan basin, Altay, NW China: Constraints from zircon U-Pb and biotite 40Ar/39Ar geochronological data. Ore Geology Reviews, 2015, 64: 128-139

[75]

SubiasP L, LópezC A, FanloG I, FernándezN C. La mineralization de Pb-An-Cu-Ag de Valdeplata (Calcena, Zaragoza) [J]. Boletín De La Sociedad Española De Mineralogía, 1994, 17: 95-102

[76]

BarrieC T, HanningtonM D. Volcanic-associated massive sulfide deposits: Pocesses and examples in modern and ancient settings [J]. Society of Economic Geologists, 1999, 8: 325-356

[77]

SubíasI, FanloI, MateoE, BillstrM K, RecioC. Isotopic studies of Pb-Zn-(Ag) and barite Alpine vein deposits in the Iberian Range (NE Spain) [J]. Chemie der Erde-Geochemistry, 2010, 70(2): 149-158

[78]

YeQ-t. A preliminary study on hypogene zoning of the Yinshan copper-lead-zinc deposit [J]. Geological Review, 1981, 3(2): 199-206(in Chinese)

[79]

WangG-g, NiP, ZhaoK-d, LiuJ-r, XieG-a, XuJ-h, ZhangZ-h. Comparison of fluid inclusions in coexisting sphalerite and quartz from Yinshan deposit, Dexing, Northeast Jiangxi Province [J]. Acta Petrologica Sinica, 2011, 27(5): 1387-1396(in Chinese)

[80]

RoedderE. Temperature, salinity, and origin of the ore-forming fluids at Pine Point, Northwest Territories, Canada, from fluid inclusion studies [J]. Economic Geology, 1968, 63(5): 439-450

[81]

RhodesD, LantosE A, LantosJ A, WebbR J, OwensD C. Pine Point orebodies and their relationship to the stratigraphy, structure, dolomitization, and karstification of the Middle Devonian barrier complex [J]. Economic Geology, 1984, 79(5): 991-1055

[82]

HanniganP, GoodfellowW. Metallogeny of the Pine Point Mississippi Valley-type zinc-lead district, southern Northwest territories. Mineral Deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods [M]// W D GOODFELLOW Edited. Geological Association of Canada, Mineral Deposits Division, 2007, 5: 609-632

[83]

ASHTON J H, DOWNING D T, FINLAY S. The geology of the Navan Zn-Pb orebody [M]// ANDREW C J, CROWE R W A, FINLAY S, PENNEL W M, PYNE J F. Geology And Genesis Of Mineral Deposits in Ireland, Dublin. Irish Association for Economic Geology, 1986: 243–280.

[84]

AshtonJ. The Navan carbonate-hosted Zn-Pb deposit, Ireland [J]. Ore Geology Reviews, 2005, 27(1–4): 270

[85]

LiD-f, ChenH-y, ZhangL, HollingsP, ChenY-j, LuW-j, ZhengY, WangC-m, FangJ, ChenG, ZhouG. Ore geology and fluid evolution of the giant Caixiashan carbonate-hosted Zn-Pb deposit in the Eastern Tianshan, NW China [J]. Ore Geology Reviews, 2015, 72: 355-372

[86]

LuW-j, ZhangL, ChenH-y, HanJ-s, JiangH-j, LiD-f, FangJ, WangC-m, ZhengY, TanZ-x. Geology, fluid inclusion and isotope geochemistry of the Hongyuan reworked sediment-hosted Zn-Pb deposit: Metallogenic implications for Zn-Pb deposits in the Eastern Tianshan, NW China [J]. Ore Geology Reviews, 2018, 100504-533

[87]

LIU Wen-jun, ZHENG Rong-cai, LI Yuan-lin, CHANG Si-he. Research of the daughter minerals in fluid inclusions of the Huayuan lead and zinc deposit [J]. Journal of Chengdu University of Technology, 1997(4): 65–69. (in Chinese)

[88]

HanR-s, ZouH-j, HuB, HuY-z, XueC-d. Features of fluid inclusions and sources of Ore-forming fluid in the Maoping Carbonate-hosted Zn-Pb-(Ag-Ge) Deposit, Yunnan, China [J]. Acta Petrological Sinica, 2007, 23(9): 2109-2118(in Chinese)

[89]

QiuW-lFluid geochemistry of the Zhaotong Pb-Zn deposit in Yunnan [D], 2013, Kunming, Kunming University of Science and Technology(in Chinese)

[90]

SiR-j, GuX-x, XiieL-x, ZhangN. Geological characteristics of the Fule polymetallic deposit in Yunnan Province: A Pb-Zn deposit with dispersed elements and unusual enrichment [J]. Geology & Exploration, 2013, 49(2): 313-322(in Chinese)

[91]

LvY-h, HanR-s, RenT, QiuW-l, HaoR, GaoY. Ore-controlling characteristics of fault structures and their relations to mineralization at Fulechang Zn-Pb Mining District in deposit concentration district of Northeastern Yunnan, China [J]. Geoscience, 2015, 29(3): 563-575(in Chinese)

[92]

ZhouJ-x, HuangZ-l, YanZ-f. The origin of the Maozu carbonate-hosted Pb-Zn deposit, southwest China: Constrained by C-O-S-Pb isotopic compositions and Sm-Nd isotopic age [J]. Journal of Asian Earth Sciences, 2013, 73(5): 39-47

[93]

PlumbK A, AhmadM, WygralakA S. Mid-Proterozoic basins of the North Australian Craton- regional geology and mineralisation [J]. Australasian Institute of Mining and Metallurgy Monograph, 1998, 22: 881-902

[94]

LoganR G, MurrayW J, WilliamsN. HYC silver-lead-zinc deposit, McArthur river [J]. Australasian Institute of Mining and Metallurgy Monograph, 1990, 14: 907-911

[95]

KelleyK D, LeachD L, JohnsonC A, ClarkJ L, FayekM, AyusoR A. Textural, compositional, and sulfur isotope variations of sulfide minerals in the red dog Zn-Pb-Ag deposits, brooks range, alaska: Implications for ore formation [J]. Economic Geology, 2004, 99(7): 1509-1532

[96]

LeachD L, MarshE, EmsboP, RombachC S, KelleyK D, AnthonyM. Nature of Hydrothermal Fluids at the Shale-Hosted Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska [J]. Economic Geology, 2004, 99(7): 1449-1480

[97]

MaG-l, BeaudoinG, QiS-j, LiY. Geology and geochemistry of the Changba SEDEX Pb-Zn deposit, Qinling orogenic belt, China [J]. Mineralium Deposita, 2004, 39(3): 380-395 in Chinese)

[98]

MaG-l, BeaudoinG, ZhongS-j, LiY, ZengZ-r. Geology and geochemistry of the Dengjiashan Zn-Pb SEDEX deposit, Qinling Belt, China [J]. Canadian Journal of Earth Sciences, 2007, 44(4): 479-492

[99]

CalugaruI L, NeculitaC M, GentyT, BussièreB, PotvinR. Performance of thermally activated dolomite for the treatment of Ni and Zn in contaminated neutral drainage [J]. Journal of Hazardous Materials, 2016, 310: 48

[100]

MachelH G. Bacterial and thermochemical sulfate reduction in diagenetic settings —Old and new insights [J]. Sedimentary Geology, 2001, 140(12): 143-175

[101]

JacquemynC, DesoukyH E, HuntD, CasiniG, SwennenR. Dolomitization of the Latemar platform: Fluid flow and dolomite evolution [J]. Marine & Petroleum Geology, 2014, 5543-67

[102]

MonteshernandezG, FindlingN, RenardF, AuzendeA L. Precipitation of ordered dolomite via simultaneous dissolution of calcite and Magnesite: New experimental insights into an old precipitation enigma [J]. Crystal Growth & Design, 2014, 14(14): 671-677

[103]

Montes-HernandezG, FindlingN, RenardF. Dissolution-precipitation reactions controlling fast formation of dolomite under hydrothermal conditions [J]. Applied Geochemistry, 2016, 73: 169-177

[104]

WenD-x, HanR-s, WangF, HeJ-j, QiuW-l, XiaY-l, ChenS-h, NiE-j. Features and formation mechanism of HTD dolomites in the Huize lead-zinc deposit, Yunnan Province [J]. Acta Petrologica et Mineralogica, 2014, 33(6): 1086-1098(in Chinese)

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/