Finite element analysis of road structure containing top-down crack within asphalt concrete layer

Sadjad Pirmohammad , Yousef Majd-Shokorlou

Journal of Central South University ›› 2020, Vol. 27 ›› Issue (1) : 242 -255.

PDF
Journal of Central South University ›› 2020, Vol. 27 ›› Issue (1) : 242 -255. DOI: 10.1007/s11771-020-4292-3
Article

Finite element analysis of road structure containing top-down crack within asphalt concrete layer

Author information +
History +
PDF

Abstract

In this paper, a four-layered road structure containing a top-down crack is investigated by performing finite element analyses in ABAQUS. In this study, in addition to the vertical load of a vehicle wheel, the horizontal load as well as its position with respect to the crack is also considered in the analyses, and the crack tip parameters including stress intensity factors (SIFs) and T-stress are then calculated. Moreover, influence of elastic modulus and thickness of the pavement layers on the crack tip parameters is studied. Results show that the horizontal and vertical loads along with their position with respect to the crack, elastic modulus and thickness of the road layers influence the crack tip parameters (KI, KII and T-stress) significantly. It was also found that for the cases that the vehicle wheel is positioned near the crack plane, only the shear deformation mode is observed at the crack tip; while, for the vehicle wheel positions far from the crack, only the opening mode is observed, and between these positions, both the opening and shear deformation modes (i.e., mixed mode I/II) are observed at the crack tip.

Keywords

asphalt concrete / top-down crack / stress intensity factors / T-stress / horizontal load / vertical load

Cite this article

Download citation ▾
Sadjad Pirmohammad, Yousef Majd-Shokorlou. Finite element analysis of road structure containing top-down crack within asphalt concrete layer. Journal of Central South University, 2020, 27(1): 242-255 DOI:10.1007/s11771-020-4292-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KleemansC P, ZuidemaJ, KransR L, MolenaarJ M M, TolmanF. Fatigue and creep crack growth in fine-sand asphalt materials [J]. Journal of Testing and Evaluation, 1997, 25(4): 424-428

[2]

MolenaarA A A. Prediction of fatigue cracking in asphalt pavements: Do we follow the right approach? [J]. Transportation Research Record: Journal of the Transportation Research Board, 2007, 2001(1): 155-162

[3]

GARZON J, DUARTE C A, BUTTLAR W G. Computational simulations of a full-scale reflective cracking test [C]// FAA Airport Technology Transfer Conference. Atlantic City, New Jersey, USA, 2010: 3–5. https://trid.trb.org/view/1420360.

[4]

MOLENAAR A A A. Fatigue and deflection cracking due to traffic loads (with Discussion) [C]// Association of Asphalt Paving Technologists. 1984, 53: 440–474. https://trid.trb.org/view/725970.

[5]

SeungW L, JaeM B, SeungH H, ShelleyM S. Evaluation of optimum rubblized depth to prevent reflection cracks [J]. Journal of Transportation Engineering, 2007, 133(6): 355-361

[6]

AL-QADI I, WANG H. Evaluation of pavement damage due to new tire designs [R]. Research Report ICT-09-048, 2009. https://www.ideals.illinois.edu/handle/2142/13925.

[7]

EMERY J. Mitigation of asphalt pavement top-down cracking[C]// 4th International SIIV Congress. Palermo, Italy, 2007. http://www.siiv.net/site/sites/default/files/Documenti/palermo/63_2848_20080108102227.pdf.

[8]

MOLENAAR J M M, MOLENAAR A A A. Fracture toughness of asphalt in the semi-circular bend test [C]// 2nd Eurasphalt and Eurobitume Congress. Barcelona, Spain, 2000: 509–517. https://trid.trb.org/view/673956.

[9]

TekalurS A, ShuklaA, SaddM, LeeK W. Mechanical characterization of a bituminous mix under quasi-static and high-strain rate loading [J]. Construction and Building Materials, 2008, 23(5): 1795-1802

[10]

WagonerM P, ButtlarW G, PaulinoG H. Disk-shaped compact tension test for asphalt concrete fracture [J]. Experimental Mechanics, 2005, 45(3): 270-277

[11]

AyatollahiM R, PirmohammadS. Temperature effects on brittle fracture in cracked asphalt concretes [J]. Structural Engineering and Mechanics, 2013, 45(1): 19-32

[12]

PirmohammadS, KianiA. Study on fracture behavior of HMA mixtures under mixed mode I/III loading [J]. Engineering Fracture Mechanics, 2016, 153: 80-90

[13]

PirmohammadS, MengharpeyM H. A new mixed mode I/II fracture test specimen: Numerical and experimental studies [J]. Theoretical and Applied Fracture Mechanics, 2018, 97: 204-214

[14]

PirmohammadS, ShabaniH. Mixed mode I/II fracture strength of modified HMA concretes subjected to different temperature conditions [J]. Journal of Testing and Evaluation, 2019, 47(5): 3355-3371

[15]

AmeriM, MansourianA, PirmohammadS, AlihaM, AyatollahiM. Mixed mode fracture resistance of asphalt concrete mixtures [J]. Engineering Fracture Mechanics, 2012, 93: 153-167

[16]

PirmohammadS, KianiA. Impact of temperature cycling on fracture resistance of asphalt concretes [J]. Computers and Concrete, 2016, 17(4): 541-551

[17]

PirmohammadS, BayatA. Fracture resistance of HMA mixtures under mixed mode I/III loading at different subzero temperatures [J]. International Journal of Solids and Structures, 2017, 120: 268-277

[18]

PirmohammadS, Majd-ShokorlouY, AmaniB. Fracture resistance of HMA mixtures modified with nanoclay and nano-Al2O3 [J]. Journal of Testing and Evaluation, 2019, 47(5): 3289-3308

[19]

PirmohammadS, AyatollahM. Fracture resistance of asphalt concrete under different loading modes and temperature conditions [J]. Construction and Building Materials, 2014, 53: 235-242

[20]

PIRMOHAMMAD S, MAJD-SHOKORLOU Y, AMANI B. Experimental investigation of fracture properties of asphalt mixtures modified with Nano Fe2O3 and carbon nanotubes [J]. Road Materials and Pavement Design, 2019. DOI: https://doi.org/10.1080/14680629.2019.1608289.

[21]

PirmohammadS, KhoramishadH, AyatollahiM. Effects of asphalt concrete characteristics on cohesive zone model parameters of hot mix asphalt mixtures [J]. Canadian Journal of Civil Engineering, 2015, 43(3): 226-232

[22]

PirmohammadS, KianiA. Effect of temperature variations on fracture resistance of HMA mixtures under different loading modes [J]. Materials and Structures, 2016, 49(9): 3773-3784

[23]

PirmohammadS, BayatA. Characterizing mixed mode I/III fracture toughness of asphalt concrete using asymmetric disc bend (ADB) specimen [J]. Construction and Building Materials, 2016, 120: 571-580

[24]

PirmohammadS, AyatollahiM. Asphalt concrete resistance against fracture at low temperatures under different modes of loading [J]. Cold Regions Science and Technology, 2015, 110: 149-159

[25]

AlihaM. On predicting mode II fracture toughness (KIIc) of hot mix asphalt mixtures using the strain energy density criterion [J]. Theoretical and Applied Fracture Mechanics, 2019, 99: 36-43

[26]

AmeriM, NowbakhtS, MolayemM, AlihaM. Investigation of fatigue and fracture properties of asphalt mixtures modified with carbon nanotubes [J]. Fatigue & Fracture of Engineering Materials & Structures, 2016, 39(7): 896-906

[27]

AlihaM, SarbijanM. Effects of loading, geometry and material properties on fracture parameters of a pavement containing top-down and bottom-up cracks [J]. Engineering Fracture Mechanics, 2016, 166: 182-197

[28]

AyatollahiM R, AlihaM R M. Analysis of a new specimen for mixed mode fracture tests on brittle materials [J]. Engineering Fracture Mechanics, 2009, 76(11): 1563-1573

[29]

AyatollahiM R, BgherifardS. Numerical analysis of an improved DCDC specimen for investigating mixed mode fracture in ceramic materials [J]. Computational Materials Science, 2009, 46(1): 180-185

[30]

AyatollahiM R, KhoramishadH. Stress intensity factors for an axially oriented internal crack embedded in a buried pipe [J]. International Journal of Pressure Vessels and Piping, 2010, 87(4): 165-169

[31]

AyatollahiM R, HashemiR. Computation of stress intensity factors (KI, KII) and T-stress for cracks reinforced by composite patching [J]. Composite Structures, 2007, 78(4): 602-609

[32]

ZHOU F, HU S, HU X, SCULLION T. Mechanistic-empirical asphalt overlay thickness design and analysis system [R]. Report No. FHWA/TX-09/0-5123-3. Texas: Texas Transportation Institute,The Texas A&M, University System, College Station, 2008. https://rosap.ntl.bts.gov/view/dot/16982.

[33]

HyunwookK, ButtlarW G, ChouK F. Mesh-independent fracture modeling for overlay pavement system under heavy aircraft gear loadings [J]. Journal of Transportation Engineering, 2010, 136(4): 370-378

[34]

AmeriM, MansourianA, Heidary-KhavasM, AlihaM R M, AyatollahiM R. Cracked asphalt pavement under traffic loading — A 3D finite element analysis [J]. Engineering Fracture Mechanics, 2011, 78(8): 1817-1826

[35]

AyatollahiM R, PirmohammadS, SedighianiK. Three-dimensional finite element modeling of a transverse top-down crack in asphalt concrete [J]. Computers and Concrete, 2014, 13(4): 569-585

[36]

MiaoY, HeT, YangQ, ZhengJ. Multi-domain hybrid boundary node method for evaluating top-down crack in asphalt pavements [J]. Engineering Analysis with Boundary Elements, 2010, 34(9): 755-760

[37]

LiangR Y, ZhuJ X. Dynamic analysis of infinite beam or modified Vlasov subgrade [J]. Journal of Transportation Engineering, 1995, 121(5): 434-443

[38]

NovakM, BirgissonB, RoqueR. Near-surface stress states in flexible pavements using measured radial tire contact stresses and ADINA [J]. Computers & Structures, 2003, 81(8-11): 859-870

[39]

UddinW, ZhangD, FernandesF. Finite element simulation of pavement discontinuities and dynamic load response [J]. Transportation Research Record, 1994, 1448: 100-106

[40]

AndersonT LFracture mechanics [M], 19952nd.New York, CRC Press

[41]

LyttonR L, TsaiF L, LeeS I, LuoR, HuS, ZhouFModels for predicting reflection cracking of hot-mix asphalt overlays [R], 2010, Washington DC, The National Academies Press: 669

[42]

MyersL A, RoqueR, BirgissonB. Use of two-dimensional finite element analysis to represent bending response of asphalt pavement structures [J]. International Journal of Pavement Engineering, 2001, 2(3): 201-214

[43]

SU K, SUN L, HACHIYA Y, MAEKAWA R. Analysis of shear stress in asphalt pavements under actual measured tire-pavement contact pressure [C]// 6th ICPT. Sapporo, Japan, 2008. https://www.researchgate.net/profile/Yoshitaka_Hachiya/publication/237452239_Analysis_of_shear_stress_in_asphalt_pavements_under_actual_measured_tire-pavement_contact_pressure/links/0deec53bf21a3acf26000000/Analysis-of-shear-stress-in-asphalt-pavements-under-actual-measured-tire-pavement-contact-pressure.pdf.

[44]

TheocarisP S. A higher-order approximation for the T-criterion of fracture in biaxial fields [J]. Engineering Fracture Mechanics, 1984, 19(6): 975-991

[45]

AyatollahiM R, AlihaM R M. Fracture parameters for a cracked semi-circular specimen [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41: 20-25

[46]

AyatollahiM R, AlihaM R M. Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading [J]. Computational Materials Science, 2007, 38(4): 660-670

[47]

SmithD J, AyatollahiM R, PavierM J. The role of T-stress in brittle fracture for linear elastic materials under mixed mode loading [J]. Fatigue and Fractyre Engineering Materials and Structures, 2001, 24(2): 137-150

[48]

AYATOLLAHI M R, PIRMOHAMMAD S. Effect of asphalt cement type on fracture behavior of asphalt mixtures [C]//9th International Fracture Conference. Istanbul, Turkey, 2011.

[49]

CaseyD, McnallyC, GibneyA, GilchristM D. Development of a recycled polymer modified binder for use in stone mastic asphalt [J]. Resources, Conservation and Recycling, 2008, 52(10): 1167-1174

[50]

ChampionL, GerardJ F, PlancheJ P, MartinD, AndersonD. Low temperature fracture properties of polymer-modified asphalts relationships with the morphology [J]. Journal of Materials Science, 2001, 36(2): 451-460

[51]

HeS S A M, HoareT R, RoyS D. Low-temperature fracture in reactive-ethylene-terpolymer-modified asphalt binders [J]. International Journal of Pavement Engineering, 2002, 3(3): 153-159

[52]

KimK W, KweonS J, DohY S, ParkT S. Fracture toughness of polymermodified asphalt concrete at low temperatures [J]. Canadian Journal of Civil Engineering, 2003, 30(2): 406-441

[53]

KimK W, HusseinM E. Variation of fracture toughness of asphalt concrete under low temperatures [J]. Construction and Building Materials, 1997, 11(78): 403-411

[54]

MOLENAAR J M M, LIU X, MOLENAAR A A A. Resistance to crack-growth and fracture of asphalt mixture [C]// 6th Int RILEM Symposium on Performance Testing and Evaluation of Bituminous Materials. Zurich, Switzerland, 2003: 618–625. DOI: https://doi.org/10.1617/2912143772.078.

[55]

QianZ D, LiZ, ChenC H. Fracture criterion for mode I crack of epoxy asphalt concrete paving course of steel deck bridge pavement [J]. Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2008, 21(5): 33-38(in Chinese)

[56]

TimmD, BirgissonB, NewcombD. Development of mechanistic-empirical pavement design in Minnesota [J]. Transportation Research Record: Journal of the Transportation Research Boar, 1998, 1629(1): 181-188

AI Summary AI Mindmap
PDF

90

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/