Driving rule extraction based on cognitive behavior analysis

Yu-cheng Zhao , Jun Liang , Long Chen , Ying-feng Cai , Ming Yao , Guo-dong Hua , Ning Zhu

Journal of Central South University ›› 2020, Vol. 27 ›› Issue (1) : 164 -179.

PDF
Journal of Central South University ›› 2020, Vol. 27 ›› Issue (1) : 164 -179. DOI: 10.1007/s11771-020-4286-1
Article

Driving rule extraction based on cognitive behavior analysis

Author information +
History +
PDF

Abstract

In order to make full use of the driver’s long-term driving experience in the process of perception, interaction and vehicle control of road traffic information, a driving behavior rule extraction algorithm based on artificial neural network interface (ANNI) and its integration is proposed. Firstly, based on the cognitive learning theory, the cognitive driving behavior model is established, and then the cognitive driving behavior is described and analyzed. Next, based on ANNI, the model and the rule extraction algorithm (ANNI-REA) are designed to explain not only the driving behavior but also the non-sequence. Rules have high fidelity and safety during driving without discretizing continuous input variables. The experimental results on the UCI standard data set and on the self-built driving behavior data set, show that the method is about 0.4% more accurate and about 10% less complex than the common C4.5-REA, Neuro-Rule and REFNE. Further, simulation experiments verify the correctness of the extracted driving rules and the effectiveness of the extraction based on cognitive driving behavior rules. In general, the several driving rules extracted fully reflect the execution mechanism of sequential activity of driving comprehensive cognition, which is of great significance for the traffic of mixed traffic flow under the network of vehicles and future research on unmanned driving.

Keywords

cognitive driving behavior / driving rule extraction / cognitive theory / integrated algorithm

Cite this article

Download citation ▾
Yu-cheng Zhao, Jun Liang, Long Chen, Ying-feng Cai, Ming Yao, Guo-dong Hua, Ning Zhu. Driving rule extraction based on cognitive behavior analysis. Journal of Central South University, 2020, 27(1): 164-179 DOI:10.1007/s11771-020-4286-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

World Health Organization. Road traffic injuries. [EB/OL]. [2018-02-19]. http://www.who.int/zh/news-room/fact-sheets/detail/road-traffic-injuries.

[2]

China Highway. Analysis on the main causes and characteristics of road traffic accidents in China. [EB/OL]. [2018-04-23]. http://www.chinahighway.com/news/2018/1169754.php.

[3]

ArbabzadehN, JafariM. A data-driven approach for driving safety risk prediction using driver behavior and roadway information data [J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(2): 17541832

[4]

PavlouD, YannisG. Road safety behavior of drivers with neurological diseases affecting cognitive functions: An interdisciplinary structural equation model analysis approach [J]. Advances in Transportation Studies, 2018, 44: 133-150

[5]

WANG J, YU X P, LIU Q, YANG Z. Research on key technologies of intelligent transportation based on image recognition and anti-fatigue driving [J]. J Image Video Proc, 2019: 33. DOI: https://doi.org/10.1186/s13640-018-0403-6.

[6]

GAO X, GAO L, DONG G. Research on intelligent driving behavior based on cognitive science and scene simulation [C]// International Conference on Intelligence Science & Information Engineering. IEEE, 2011. DOI: https://doi.org/10.1109/ISIE.2011.15.

[7]

AyoubiS, LimamN, SalahuddinM A, ShahriarN, BoutabaR, Estrada-SolanoF, RendonO M C. Machine learning for cognitive network management [J]. IEEE Communications Magazine, 2018, 56(1): 158-165

[8]

HansenP, OxobyR J. An earned presence: Studying the effect of multi-task improvisation systems on cognitive and learning capacity [J]. Connection Science, 2017, 29(1): 77-93

[9]

BeetzM, BussM, WollherrD. Cognitive technical systems-what is the role of artificial intelligence? [C]. Annual Conference on Artificial Intelligence, 2007, Berlin, Heidelberg, Springer

[10]

BenderiusO, BergerC, LundgrenV M. The best rated human-machine interface design for autonomous vehicles in the 2016 grand cooperative driving challenge [J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(4): 1302-1307

[11]

PopaA, McdowellJ J. Behavioral variability in an evolutionary theory of behavior dynamics [J]. Journal of the Experimental Analysis of Behavior, 2016, 105(2): 270-290

[12]

HuiJ, HannaE, GattoC L, PageT L, BhuvaB, BroadieK. A fully automated Drosophila, olfactory classical conditioning and testing system for behavioral learning and memory assessment [J]. Journal of Neuroscience Methods, 2016, 261(3): 62-74

[13]

VaaT. Modelling driver behaviour on basis of emotions and feelings: Intelligent transport systems and behavioural adaptations [M]. Modelling Driver Behaviour in Automotive Environments, 2007, London, Springer

[14]

SalvucciD D. Modeling driver behavior in a cognitive architecture [J]. Human Factors, 2006, 48(2): 362-380

[15]

GraefeA CThe role of cognition in simulated driving behavior in young adults with attention-deficit/hyperactivity disorder [D], 2015, Philadelphia, Drexel University

[16]

WangX-y, WangL. Cooperative simulation model for driving behavior [J]. Journal of Southwest Jiaotong University, 2007, 42(2): 238-242(in Chinese)

[17]

HamdarS H, MahmassaniH S, TreiberM. From behavioral psychology to acceleration modeling: Calibration, validation, and exploration of drivers’ cognitive and safety parameters in a risk-taking environment [J]. Transportation Research Part B: Methodological, 2015, 7832-53

[18]

QuTDriver behavior modeling based on stochastic model predictive control [D], 2015, Changchun, Jilin University(in Chinese)

[19]

WatanabeT, SasakiY, ShibataK, KawatoM. Advances in fMRI Real-Time Neurofeedback [J]. Trends in Cognitive Sciences, 2017, 21(12): 14-15

[20]

HovhannisyanGarri. Humanistic cognitive science. The Humanistic Psychologist, 2018, 46(1): 30-52

[21]

DelbroekT, VermeylenW, SpildoorenJ. The effect of cognitive-motor dual task training with the biorescue force platform on cognition, balance and dual task performance in institutionalized older adults: A randomized controlled trial [J]. Journal of Physical Therapy Science, 2017, 29(7): 1137-1143

[22]

HramovA E, FrolovN S, MaksimenkoV A. Artificial neural network detects human uncertainty [J]. Chaos, 2018, 28(3): 1-10

[23]

HansenL K, SalamonP. Neural network ensembles [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1990, 12(10): 993-1001

[24]

PezeshkiZahra, MazinaniSayyed Majid. Comparison of artificial neural networks, fuzzy logic and neuro fuzzy for predicting optimization of building thermal consumption: a survey. Artificial Intelligence Review, 2018, 52(1): 495-525

[25]

LiangJ, ShaZ-q, ChenL. Dynamic neural network-based integrated learning algorithm for driver behavior [J]. Journal of Transportation Systems Engineering and Information Technology, 2012, 12(2): 34-40 in Chinese)

[26]

LinM-lIncremental learning based on neural networks ensemble [D], 2012, Hefei, University of Science and Technology of China(in Chinese)

[27]

QuW N, GeY, XiongY X, CarciofoR, ZhaoW G, ZhangK. The relationship between mind wandering and dangerous driving behavior among Chinese drivers [J]. Safety Science, 2015, 78: 41-48

[28]

ZhangLemei, LiuPeng, GullaJon Atle. Dynamic attention-integrated neural network for session-based news recommendation. Machine Learning, 2019, 108(10): 1851-1875

[29]

LedesmaR D, MontesS A, PoóF M L-R F. Individual differences in driver inattention: The attention-related driving errors scale [J]. Traffic Injury Prevention, 2010, 11(2): 142-150

[30]

KangX J, NamgungM, FujiwaraA, KimW C, WangW J. Analysis of vehicle maneuverability and driving characteristics on a curved road condition [J]. KSCE Journal of Civil Engineering, 2018, 23(6): 420-432

[31]

MaC, TsangI W, ShenF M, LiuC C. Error correcting input and output hashing [J]. IEEE Transactions on Cybernetics, 2019, 49(3): 781-791

[32]

BADNAVA B, MOZAYANI N. A new potential-based reward shaping for reinforcement learning agent [J]. arXiv, 2019: 1902.06239.

[33]

JANSEN T, ZARGES C. Analysis of evolutionary algorithms: From computational complexity analysis to algorithm engineering [C]// Foundations of Genetic Algorithms, International Workshop, Foga 2011. Schwarzenberg, Austria. 2011: 1–14. DOI: https://doi.org/10.1145/1967654.1967656.

[34]

HaeserGabriel, LiuHongcheng, YeYinyu. Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary. Mathematical Programming, 2018, 178(1-2): 263-299

[35]

DebattistaK, Bashford-RogersT, HarveyC, WaterfieldB, ChalmersA. Subjective evaluation of high-fidelity virtual environments for driving simulations [J]. IEEE Transactions on Human-Machine Systems, 2018, 48(1): 30-40

[36]

AzadehA, BonabN A, SalehiV, ZarrinM. A unique algorithm for the assessment and improvement of job satisfaction by resilience engineering: Hazardous labs [J]. International Journal of Industrial Ergonomics, 2015, 49(9): 68-77

[37]

GhoshJ, DeuserL, BeckS D. A neural network based hybrid system for detection, characterization, and classification of short-duration oceanic signals [J]. IEEE Journal of Oceanic Engineering, 2002, 17(4): 351-363

[38]

AsadiS, ShahrabiJ. Complexity-based parallel rule induction for multiclass classification [J]. Information Sciences, 2017, 380(2): 53-73

[39]

FerrettiE, TamargoL H, GarcíaA J, ErrecaldeM L, SimariG R. An approach to decision making based on dynamic argumentation systems [J]. Artificial Intelligence, 2017, 242(C): 107-131

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/