Performance enhancement of IMC-PID controller design for stable and unstable second-order time delay processes
Munna Kumar , Durga Prasad , Ram Sharan Singh
Journal of Central South University ›› 2020, Vol. 27 ›› Issue (1) : 88 -100.
Performance enhancement of IMC-PID controller design for stable and unstable second-order time delay processes
An IMC-PID controller was proposed for unstable second-order time delay system which shows the characteristics of inverse response (RHP zero). A plot of Ms versus λ was suggested to calculate the suitable tuning parameter λ, which provides a trade-off between performance and robustness. Six different forms of process models were selected from literature to show the applicability of the present method. Performance of controller was calculated by ITAE and total variation TV and compared with recently published tuning rules. Undesirable overshoot was removed by using a set-point weighting parameter. Robustness was tested by introducing a perturbation into the various model parameters and closed-loop results show that the designed controller is robust in the case of model uncertainty. The proposed method shows an overall better closed-loop response as compared to other recently reported methods.
maximum sensitivity / internal model control / unstable process / set-point weighting / integral of time-weighted absolute error
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
SEBORG D E, MELLICHAMP D A, EDGAR T F, DOYLE III F J. Process dynamics and control [M]. John Wiley & Sons, 2010. |
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
/
| 〈 |
|
〉 |