Origin of Early Creceouscalc-alkaline granite, Taxkorgan: Implications for evolution of Tethys evolution in central Pamir

Rui-hua Li , Bo Peng , Cai-sheng Zhao , Miao Yu , Lin-shan Song , Han Zhang

Journal of Central South University ›› 2020, Vol. 26 ›› Issue (12) : 3470 -3487.

PDF
Journal of Central South University ›› 2020, Vol. 26 ›› Issue (12) : 3470 -3487. DOI: 10.1007/s11771-019-4267-4
Article

Origin of Early Creceouscalc-alkaline granite, Taxkorgan: Implications for evolution of Tethys evolution in central Pamir

Author information +
History +
PDF

Abstract

The Pamir plateau may have been a westward continuation of Tibet plateau. Meanwhile, the Rushan-Pshart suture is correlative to the Bangong-Nujiang suture of Tibet, and the Central Pamir is the lateral equivalent of the Qiangtang Block. We present the first detailed LA-ICPMS zircon U-Pb chronology, major and trace element, and Lu-Hf isotope geochemistry of Taxkorgan two-mica monzogranite to illuminate the Tethys evolution in central Pamir. LA-ICPMS zircon U-Pb dating shows that two-mica monzogranite is emplaced in the Cretaceous (118 Ma). Its geochemical features are similar to S-type granite, with enrichment in LREEs and negative Ba, Sr, Zr and Ti anomalies. All the samples show negative zircon εHf(t) values ranging from −17.0 to −12.5 (mean −14.5), corresponding to crustal Hf model (TDM2) ages of 1906 to 2169 Ma. It is inferred that these granitoids are derived from partial melting of peliticmetasedimentary rocks analogous to the Paleoproterozoic Bulunkuole Group, predominantly with muscovite schists component. Based on the petrological and geochemical data presented above, together with the regional geology, this work provides new insights that Bangong-Nujiang Ocean closed in Early Cretaceous(120–114 Ma).

Keywords

Tethys ocean / Pamir plateau / S-type granite / Early Cretaceous tectono-magmatism / Geochronology and petrogenesis

Cite this article

Download citation ▾
Rui-hua Li, Bo Peng, Cai-sheng Zhao, Miao Yu, Lin-shan Song, Han Zhang. Origin of Early Creceouscalc-alkaline granite, Taxkorgan: Implications for evolution of Tethys evolution in central Pamir. Journal of Central South University, 2020, 26(12): 3470-3487 DOI:10.1007/s11771-019-4267-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BurtmanV S. Peter Molnar, geological and geophysical evidence for deep subduction of continental crust beneath the pamir [J]. Special Paper of the Geological Society of America, 1993, 281: 248-251

[2]

JiangY-H, JiangS-Y, LingH-F, ZhouX-R, RuiX-J, YangW-Z. Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: Implications for granitoid geneses [J]. Lithos, 2002, 63: 165-187

[3]

JiangY-H, LiaoS-Y, YangW-Z, ShenW-Z. An island arc origin of plagiogranites at Oytag, western Kunlun orogen, northwest China: SHRIMP zircon U-Pb chronology, elemental and Sr-Nd-Hf isotopic geochemistry and Paleozoic tectonic implications [J]. Lithos, 2008, 106: 323-335

[4]

MatteP H, TapponnierP, ArnaudL B, AvouacJ P, VidalP H, LiuQ, PanY-S, WangY. Tectonics of western Tibet, between the tarim and the indus [J]. Earth and Planetary Science Letters, 1996, 142: 311-330

[5]

MatternF, SchneiderW. Suturing of the Proto- and Paleo-Tethys oceans in the western Kunlun (Xinjiang, China) [J]. Journal of Asian Earth Sciences, 2000, 18: 637-650

[6]

YinA, HarrisonT M. Geologic evolution of the himalayan-tibetan orogen [J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280

[7]

YuanC, SunM, YangJ-S, ZhouH, ZhouM-F. Nb-depleted, continental rift-related Akaz metavolcanic rocks (West Kunlun): Implication for the rifting of the Tarim Craton from Gondwana [J]. Geological Society London Special Publications, 2004, 226: 131-143

[8]

YuanC, SunM, ZhouM-F, XiaoW-J, ZhouH. Geochemistry and petrogenesis of the Yishak Volcanic Sequence, Kudi ophiolite, West Kunlun (NW China): Implications for the magmatic evolution in a subduction zone environment [J]. Contributions to Mineralogy and Petrology, 2005, 150: 195-211

[9]

YuanC, SunM, ZhouM-F, ZhouH, XiaoW-J, LiJ-L. Absence of Archean basement in the South Kunlun Block: Nd-Sr-O isotopic evidence from granitoids [J]. Island Arc, 2003, 12: 13-21

[10]

RobinsonA C, YinA, CraigE M, HarrisonT M, ZhangS-H, WangX-F. Tectonic evolution of the northeastern Pamir: Constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China [J]. Geological Society of America Bulletin, 2004, 116: 953

[11]

ZhangY, NiuY-L, HuY, LiuJ-J, YeL, KongJ-J, DuanM. The syncollisional granitoid magmatism and continental crust growth in the West Kunlun Orogen, China - Evidence from geochronology and geochemistry of the Arkarz pluton [J]. Lithos, 2015, 245191-204

[12]

XiaoW-J, WindleyB F, ChenH-L, ZhangG-C, LiL-L. Carboniferous-Triassic subduction and accretion in the western Kunlun, China: Implications for the collisional and accretionary tectonics of the northern Tibetan plateau [J]. Geology, 2002, 30: 295-298

[13]

XiaoW-J, WindleyB F, LiuD-Y, JianP, LiuC Z, YuanC, SunM. Accretionary Tectonics of the Western Kunlun Orogen, China: A paleozoic-early mesozoic, long-lived active continental margin with implications for the growth of southern eurasia [J]. Journal of Geology, 2005, 113: 687-705

[14]

JiangY-H, JiaR-Y, LiuZ, LiaoS-Y, ZhaoP, ZhouQ. Origin of Middle Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Kunlun orogen, northwest China: A record of the closure of Paleo-Tethys [J]. Lithos, 2013, s156–159: 13-30

[15]

AngioliniL, ZanchiA, ZanchettaS, NicoraA, GiovanniV. The Cimmerian geopuzzle: New data from south pamir [J]. Terra Nova, 2013, 25: 352-360

[16]

AngioliniL, ZanchiA, ZanchettaS, NicoraA, VuoloI, BerraF, HendersonC, MalaspinaN, RettoriR, VachardD. From rift to drift in South Pamir (Tajikistan): Permian evolution of a Cimmerian terrane [J]. Journal of Asian Earth Sciences, 2015, 102: 146-169

[17]

DuceaM N, LutkovV, MinaevV T, HackerB, RatschbacherL, LuffiP, SchwabM, GehrelsG E, McwilliamsM, VervoortJ. Building the Pamirs: The view from the underside [J]. Geology, 2003, 31: 849-852

[18]

FaisalS, LarsonK P, CottleJ M, LammingJ. Building the Hindu Kush: Monazite records of terrane accretion, plutonism and the evolution of the Himalaya-Karakoram-Tibet orogen [J]. Terra Nova, 2014, 26: 395-401

[19]

LacassinR, ValliF, ArnaudN, LeloupP H, PaquetteJ L, LiH-B, TapponnierP, ChevalierM L, GuillotS, MaheoG. Large-scale geometry, offset and kinematic evolution of the Karakorum fault, Tibet [J]. Earth and Planetary Science Letters, 2004, 219: 255-269

[20]

RobinsonA C. Mesozoic tectonics of the Gondwanan terranes of the Pamir plateau [J]. Journal of Asian Earth Sciences, 2015, 102: 170-179

[21]

FaisalS, LarsonK P, KingJ, CottleJ M. Rifting, subduction and collisional records from pluton petrogenesis and geochronology in the Hindu Kush, NW Pakistan [J]. Gondwana Research, 2015, 35: 286-304

[22]

SchwabM, RatschbacherL, SiebelW, McwilliamsM, MinaevV, LutkovV, ChenF-K, StanekK, NelsonB, FrischW. Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet [J]. Tectonics, 2004, 23: TC4002

[23]

RobinsonA C, YinA, ManningC E, HarrisonT M, ZhangS-H, WangX-F. Cenozoic evolution of the eastern Pamir: Implications for strain-accommodation mechanisms at the western end of the Himalayan-Tibetan orogen [J]. Geological Society of America Bulletin, 2007, 119882-896

[24]

ValliF, ArnaudN, LeloupP H, SobelE R, MahéoG, LacassinR, GuillotS, LiH-B, TapponnierP, XuZ-Q, ValliF. Twenty million years of continuous deformation along the Karakorum fault, western Tibet [J]. A thermochronological analysis. Tectonics 26, TC4004, Tectonics, 2007, 26: 3672-3672

[25]

ValliF, LeloupP H, PaquetteJ L, ArnaudN, LiH-B, TapponnierP, LacassinR, GuillotS, LiuD-Y, DelouleETIENNE. New U-Th/Pb constraints on timing of shearing and long-term slip-rate on the Karakorum fault [J]. Tectonics, 2008, 27: 97-112

[26]

CowgillE. Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China [J]. Geological Society of America Bulletin, 2010, 122: 145-161

[27]

CoulonC, MaluskiH, BollingerC, WangS. Mesozoic and cenozoic volcanic rocks from central and southern Tibet: 39 Ar- 40 Ar dating, petrological characteristics and geodynamical significance [J]. Earth and Planetary Science Letters, 1986, 79: 281-302

[28]

QiangJ-W, WuF-Y, ChungS-L, LiJ-X, LiuC-Z. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet [J]. Chemical Geology, 2009, 262: 229-245

[29]

QiJ-Z, WangQ, LiZ-X, WymanD A, TangG-J, JiaX-H, YangY-H. Late Cretaceous (ca. 90 Ma) adakitic intrusive rocks in the Kelu area, Gangdese Belt (southern Tibet): Slab melting and implications for Cu-Au mineralization [J]. Journal of Asian Earth Sciences, 2012, 53: 67-81

[30]

LiS-M, ZhuD-C, WangQ, ZhaoZ-D, SuiQ-L, LiuS-A, LiuD, MoX-X. Northward subduction of Bangong-Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet [J]. Lithos, 2014, 205: 284-297

[31]

LiuY-M, WangM, LiC, XieC-M, ChenH-Q, LiY-B, FanJ-J, LiX-K, XuW, SunZ-M. Cretaceous structures in the Duolong region of central Tibet: Evidence for an accretionary wedge and closure of the Bangong-Nujiang Neo-Tethys Ocean [J]. Gondwana Research, 2017, 48: 110-123

[32]

ZhangZ-M, ShenK, SantoshM, DongX. High density carbonic fluids in a slab window: Evidence from the Gangdese charnockite, Lhasa terrane, southern Tibet [J]. Journal of Asian Earth Sciences, 2011, 42: 515-524

[33]

ZhuD-C, ZhaoZ-D, NiuY-L, MoX-X, ChungS-L, HouZ-Q, WangL-Q, WuF-Y. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth [J]. Earth and Planetary Science Letters, 2011, 301: 241-255

[34]

KappP, DecellesP G, GehrelsG E, HeizlerM, DingL. Geological records of the Cretaceous Lhasa-Qiangtang and Indo-Asian collisions in the Nima basin area, central Tibet [J]. Geological Society of America Bulletin, 2007, 119: 917-932

[35]

KappP, MurphyM A, YinA, HarrisonT M, DingL, GuoJ-H. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet [J]. Tectonics, 2003, 22: 253-253

[36]

LiC. Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet: Implications for the evolution of the Banggongco-Nujiang oceanic arm of the Neo-Tethys [J]. International Geology Review, 2014, 56: 1504-1520

[37]

ZhangK-J, XiaB, ZhangY-X, LiuW-L, ZengL, LiJ-F, LiF-X. Central Tibetan Meso-Tethyan oceanic plateau [J]. Lithos, 2014, s210–211: 278-288

[38]

FanJ-J, LiC, XieC-M, WangM, ChenJ-W. Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet: Constraints on the timing of closure of the Banggong-Nujiang Ocean [J]. Lithos, 2015, 227: 148-160

[39]

LiY-L, HeJ, WangC-S, HanZ-P, MaP-F, XuM, DuK-Y. Cretaceous volcanic rocks in south Qiangtang Terrane: Products of northward subduction of the Bangong-Nujiang Ocean? [J]. Journal of Asian Earth Sciences, 2015, 104: 69-83

[40]

WangQ, ZhuD-C, ZhaoZ-D, LiuS-A, ChungS-L, LiS-M, LiuD, DaiJ-G, WangL-Q, MoX-X. Origin of the ca. 90Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet: Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone [J]. Lithos, 2014, s198–199: 24-37

[41]

WangY, ZhangX-M, WangE-C, ZhangJ-F, LiQ, SunG-H. 40Ar/39Ar thermochronological evidence for formation and Mesozoic evolution of the northern-central segment of the Altyn Tagh fault system in the northern Tibetan Plateau [J]. Geological Society of America Bulletin, 2005, 117: 1336

[42]

ZhangK-J, ZhangY-X, TangX-C, XiaB. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision [J]. Earth-Science Reviews, 2012, 114236-249

[43]

ZhuD-C, LiS-M, CawoodP A, WangQ, ZhaoZ-D, LiuS-A, WangL-Q. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction [J]. Lithos, 2015, 245: 7-17

[44]

RobinsonA C. Geologic offsets across the northern Karakorum fault: Implications for its role and terrane correlations in the western Himalayan-Tibetan orogen [J]. Earth and Planetary Science Letters, 2009, 279: 123-130

[45]

SobelE R, ChenJ, SchoenbohmL M, ThiedeR, StockliD F, SudoM, StreckerM R. Oceanic-style subduction controls late Cenozoic deformation of the Northern Pamir orogen [J]. Earth and Planetary Science Letters, 2013, 363: 204-218

[46]

YangY-T, GuoZ-X, LuoY-J. Middle-Late Jurassic tectonostratigraphic evolution of Central Asia, implications for the collision of the Karakoram-Lhasa Block with Asia [J]. Earth-Science Reviews, 2017, 166: 83-110

[47]

RobinsonA C, DuceaM, LapenT J. Detrital zircon and isotopic constraints on the crustal architecture and tectonic evolution of the northeastern Pamir [J]. Tectonics, 2012, 31: TC2016

[48]

BurtmanV S. Tien Shan, Pamir, and Tibet: History and geodynamics of phanerozoic oceanic basins [J]. Geotectonics, 2010, 44388-404

[49]

WangC, WangY-H, LiuL, HeS-P, LiR-S, LiM, YangW-Q, CaoY-T, MeertJ G, ShiC. The Paleoproterozoic magmatic-metamorphic events and cover sediments of the Tiekelik Belt and their tectonic implications for the southern margin of the Tarim Craton, northwestern China [J]. Precambrian Research, 2014, 254: 210-225

[50]

WangC, LiuL, WangY-H, HeS-P, LiR-S, LiM, YangW-Q, CaoY-T, CollinsA S, ShiC. Recognition and tectonic implications of an extensive Neoproterozoic volcano-sedimentary rift basin along the southwestern margin of the Tarim Craton, northwestern China [J]. Precambrian Research, 2015, 257: 65-82

[51]

KangL, XiaoP-X, GaoX-F, XiR-G, YangZ-C. Neopaleozoic and Mesozoic granitoid magmatism and tectonic evolution of the western West Kunlun Mountains [J]. Geology in China, 2015, 42: 533-552(in Chinese)

[52]

LiW, DongY-P, GuoA-L, LiuX-M, ZhouD-W. Chronology and tectonic significance of Cenozoic faults in the Liupanshan Arcuate Tectonic Belt at the northeastern margin of the Qinghai-Tibet Plateau [J]. Journal of Asian Earth Sciences, 2013, 73: 103-113

[53]

WangC, LiuL, FawnaK, YangW-Q, CaoY-T, HeS-P, ZhuX-H, LiangW-T. Origins of Early Mesozoic granitoids and their enclaves from West Kunlun, NW China: implications for evolving magmatism related to closure of the Paleo-Tethys ocean [J]. International Journal of Earth Sciences, 2016, 105: 1-24

[54]

MengY-K, XiongF-H, XuZ-Q, MaX-X. Petrogenesis of Late Cretaceous mafic enclaves and their host granites in the Nyemo region of southern Tibet: Implications for the tectonic-magmatic evolution of the Central Gangdese Belt [J]. Journal of Asian Earth Sciences, 2019, 176: 27-41

[55]

MENG Yuan-ku, XU Zhi-qin, GAO Cun-shan, XU Yang, LI Ri-hui. The identification of the Eocene magmatism and tectonic significance in the middle Gangdese magmatic belt, southern Tibet [J]. Acta Petrologica Sinica, 2018. (in Chinese).

[56]

LiR-H, OuyangH-G, MaoJ-W, ZhuY-F. Geology, geochronology, and geochemistry of the siruyidie’er prospect, Taxkorgan: A possible Miocene porphyry Mo±Cu deposit in the Central Pamir [J]. Ore Geology Reviews, 2019, 105: 572-589

[57]

LiR-H, OuyangH-G, ZhaoC-S, SongL-S, XuH-L. Geological characteristics and mineralogenetic epoch of the Siruyidie’er Copper Polymetallic Deposit, South Xinjiang [J]. Acta Geologica Sinica, 2018, 92(7): 1447-1457(in Chinese)

[58]

LiuY-S, GaoS, HuZ-C, GaoC-G, ZongK-Q, WangD-B. Continental and oceanic crust recycling-induced melt-peridotite Interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths [J]. Journal of Petrology, 2010, 51: 392-399

[59]

LiuY-S, HuZ-C, GaoS, GüntherD, XuJ, GaoC-G, ChenH-H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard [J]. Chemical Geology, 2008, 257: 34-43

[60]

LiuY-S, HuZ-C, ZongK-Q, GaoC-Q, GaoS, XuJ, ChenH-H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS [J]. Chinese Science Bulletin, 2010, 55: 1535-1546

[61]

WuF-Y, YangY-H, XieL-W, YangJ-H, XuP. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology [J]. Chemical Geology, 2006, 234: 105-126

[62]

YuanH-L, GaoS, DaiM-N, ZongC-L, GüntherD, FontaineG H, LiuX-M, DiwuC-R. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS [J]. Chemical Geology, 2008, 247: 100-118

[63]

CoxK G, BellJ D, PankhurstR JThe Interpretation of igneous rocks [M], 1979, Dordrecht, Netherlands, Springer

[64]

MiyashiroA. Nature of alkalic volcanic rock series [J]. Contributions to Mineralogy and Petrology, 1978, 66: 91-104

[65]

RickwoodP C. Boundary lines within petrologic diagrams which use oxides of major and minor elements [J]. Lithos, 1989, 22: 247-263

[66]

ManiarP D, PiccoliP M. Tectonic discrimination of granitoids [J]. Geological society of America Bulletin, 1989, 101: 635-643

[67]

BoyntonW V. Chapter 3-Cosmochemistry of the Rare Earth Elements: Meteorite studies [M]. Developments in Geochemistry, 1984, 2: 63-114

[68]

SunS S, McdonoughW F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [J]. Geological Society London Special Publications, 1989, 42: 313-345

[69]

LiuH, ZhangH, LiG-M, HuangH-X, XiaoW-F, YouQ, MaD-F, ZhangH, ZhangH. Petrogenesis of the early cretaceous qingcaoshan strongly peraluminous s-type granitic pluton, southern qiangtang, northern tibet: Constraints from whole-rock geochemistry and zircon U-Pb Geochronology [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(5): 848-860(in Chinese with English Abstract)

[70]

JiangY-H, LiuZ, JiaR-Y, LiaoS-Y, ZhaoP, ZhouQ. Origin of Early Cretaceous high-K calc-alkaline granitoids, western Tibet: Implications for the evolution of the Tethys in NW China [J]. International Geology Review, 2014, 56: 88-103

[71]

LiuD-L, ShiR-D, DingL, HuangQ-S, ZhangX-R, YueY-H, ZhangL-Y. Zircon U-Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Tibet: Implications for the subduction of the Bangong-Nujiang Tethyan Ocean [J]. Gondwana Research, 2017, 41: 157-172

[72]

ChampionD C, BultitudeR J. The geochemical and Sr Nd isotopic characteristics of Paleozoic fractionated S-types granites of north Queensland: Implications for S-type granite petrogenesis [J]. Lithos, 2013, s162–163: 37-56

[73]

ChappellB W. White A J R, I- and S-type granites in the lachlan fold belt [J]. Transactions of the Royal Society of Edinburgh Earth Sciences, 1992, 83: 1-26

[74]

ChappellB W, WhiteA J R. Two contrasting granite types: 25 years later [J]. Australian Journal of Earth Sciences, 2001, 48: 489-499

[75]

CollinsW J, RichardsS W. Geodynamic significance of S-type granites in circum-Pacific orogens [J]. Geology, 2008, 36: 559-562

[76]

BarbarinB. Genesis of the two main types of peraluminous granitoids [J]. Geology, 1996, 24: 295-298

[77]

ApplebyS K, GillespieM R, GrahamC M, HintonR W, OliverG J H, KellyN M. Do S-type granites commonly sample infracrustal sources? New results from an integrated O, U-Pb and Hf isotope study of zircon [J]. Contributions to Mineralogy and Petrology, 2010, 160: 115-132

[78]

WeiD, LiX-H, WangQ, WangX-C, LiuY, WymanD A. Paleoproterozoic S-type granites in the Helanshan Complex, Khondalite Belt, North China Craton: Implications for rapid sediment recycling during slab break-off [J]. Precambrian Research, 2014, 254: 59-72

[79]

GuoZ-F, WilsonM. The Himalayan leucogranites: Constraints on the nature of their crustal source region and geodynamic setting [J]. Gondwana Research, 2012, 22: 360-376

[80]

JiangY-H, ZhaoP, ZhouQ, LiaoS-Y, JinG-D. Petrogenesis and tectonic implications of Early Cretaceous S- and A-type granites in the northwest of the Gan-Hang rift, SE China [J]. Lithos, 2011, 121: 55-73

[81]

KoesterE, PawleyA R, FernandesL A D, PorcherC C, SolianiE. Experimental melting of cordierite gneiss and the petrogenesis of syntranscurrent peraluminous granites in southern brazil [J]. Journal of Petrology, 2002, 43: 1595-1616

[82]

SylvesterP J. Post-collisional strongly peraluminous granites [J]. Lithos, 1998, 45: 29-44

[83]

DouceP E A. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? [J]. Geological Society London Special Publications, 1999, 168: 55-75

[84]

WhiteA J R, ChappellB W. Ultrametamorphism and granitoid genesis [J]. Tectonophysics, 1977, 43: 7-22

[85]

GriffinW L, WangX, JacksonS E, PearsonN J, O’ReillyS Y, XuX-S, ZhouX-M. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes [J]. Lithos, 2002, 61: 237-269

[86]

JiW-H, LiR-S, ChenS-J, HeS-P, ZhaoZ-M, BianX-W, ZhuH-P, CuiJ-G, RenJ-G. The discovery of Palaeoproterozoic volcanic rocks in the Bulunkuoler Group from the Tianshuihai Massif in Xinjiang of Northwest China and its geological significance [J]. Science China Earth Sciences, 2011, 54(1): 61-72

[87]

MillerC F, McdowellS M, MapesR W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance [J]. Geology, 2003, 31: 529-532

[88]

GardienV, ThompsonA B, GrujicD, UlmerP. Experimental melting of biotite + plagioclase + quartz ± muscovite assemblages and implications for crustal melting [J]. Journal of Geophysical Research Solid Earth, 1995, 100: 15581-15591

[89]

KingJ, HarrisN, ArglesT, ParrishR, ZhangH-F. Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet [J]. Geological Society of America Bulletin, 2011, 123: 218-239

[90]

VisonA D, LombardoB. Two-mica and tourmaline leucogranites from the Everest-Makalu region (Nepal-Tibet). Himalayan leucogranite genesis by isobaric heating? [J]. Lithos, 2002, 62: 125-150

[91]

ZhangH-F, HarrisN, ParrishR, KelleyS, ZhangL, RogersN, ArglesT, KingJ. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform [J]. Earth and Planetary Science Letters, 2004, 228: 195-212

[92]

BarbarinB. A review of the relationships between granitoid types, their origins and their geodynamic environments [J]. Lithos, 1999, 46: 605-626

[93]

FloydP A, WinchesterJ A. Magma type and tectonic setting discrimination using immobile elements [J]. Earth and Planetary Science Letters, 1975, 27: 211-218

[94]

PearceJ A, HarrisN B W, TindleA G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks [J]. Journal of Petrology, 1984, 25: 956-983

[95]

HarrisN B W, PearceJ A, TindleA G. Geochemical characteristics of collision-zone magmatism [J]. Geological Society of London Special Publications, 1986, 19: 67-81

[96]

HealyB, CollinsW J, RichardsS W. A hybrid origin for Lachlan S-type granites: The Murrumbidgee Batholith example [J]. Lithos, 2004, 78: 197-216

[97]

XiD-P, WanX-Q, LiG-B, LiG. Cretaceous integrative stratigraphy and timescale of China [J]. Science China Earth Sciences, 2019, 62: 256-286

[98]

QuX-M, XinH-B, DuD-D, ChenH. Ages of post-collisional A-type granite and constraints on the closure of the oceanic basin in the middle segment of the Bangonghu-Nujiang suture, the Tibetan plateau [J]. Geochimica, 2012, 41: 1-14(in Chinese)

[99]

FanJ-J, LiC, SunZ-M, XuW, WangM, XieC-M. Early Cretaceous MORB-type basalt and A-type rhyolite in northern Tibet: Evidence for ridge subduction in the Bangong-Nujiang Tethyan Ocean [J]. Journal of Asian Earth Sciences, 2018, 154: 187-201

[100]

FanJ-J, LiC, XieC-M, LiuY-M, XuJ-X, ChenJ-W. Remnants of late permian-middle triassic ocean islands in northern Tibet: Implications for the late-stage evolution of the paleo-tethys ocean [J]. Gondwana Research, 2017, 44: 7-21

[101]

MengY-K, XuZ-Q, XuY, MaS-W. Late triassic granites from the quxu batholith shedding a new light on the evolution of the gangdese belt in southern Tibet [J]. Acta Geologica Sinica (English Edition), 2018, 92: 462-481

[102]

KappP, YinA, HarrisonT M, DingL. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet [J]. Geological Society of America Bulletin, 2005, 117: 865-878

[103]

LeierA L, DecellesP G, KappP, GehrelsG E. Lower cretaceous strata in the lhasa terrane, tibet, with implications for understanding the early tectonic history of the tibetan plateau [J]. Journal of Sedimentary Research, 2007, 77: 809-825

[104]

XuM-J, LiC, ZhangX-Z, WuY-W. Nature and evolution of the Neo-Tethys in central Tibet: synthesis of ophiolitic petrology, geochemistry, and geochronology [J]. International Geology Review, 2014, 56: 1072-1096

[105]

WeiY-Q, ZhaoZ-D, NiuY-L, ZhuD-C, DongL, WangQ, HouZ-Q, MoX-X, WeiJ-C. Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet: Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane [J]. Lithos, 2017, s278–281: 477-490

[106]

ZhuD-C, LiS-M, CawoodP A, WangQ, ZhaoZ-D, LiuS-A, WangL-Q. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction [J]. Lithos, 2016, 245: 7-17

[107]

LiuZ-C, DingL, ZhangL-Y, WangC, QiuZ-L, WangJ-G, ShenX-L, DengX-Q. Sequence and petrogenesis of the Jurassic volcanic rocks (Yeba Formation) in the Gangdese arc, southern Tibet: Implications for the Neo-Tethyan subduction. Lithos [J], 2018, 312: 72-88

[108]

LippertP C, van HinsbergenD J J, GuillaumeD N. The Early Cretaceous to present latitude of the central Lhasa-plano (Tibet): A paleomagnetic synthesis with implications for Cenozoic tectonics, paleogeography, and climate of Asia [J]. Special Paper of the Geological Society of America, 2014, 507: 1-21

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/