Geochronology, petrogenesis and tectonic significance of Dahongliutan pluton in Western Kunlun orogenic belt, NW China

Kun Ding , Ting Liang , Xiu-qing Yang , Yi Zhou , Yong-gang Feng , Kan Li , Jia-xin Teng , Rui-ting Wang

Journal of Central South University ›› 2020, Vol. 26 ›› Issue (12) : 3420 -3435.

PDF
Journal of Central South University ›› 2020, Vol. 26 ›› Issue (12) : 3420 -3435. DOI: 10.1007/s11771-019-4264-7
Article

Geochronology, petrogenesis and tectonic significance of Dahongliutan pluton in Western Kunlun orogenic belt, NW China

Author information +
History +
PDF

Abstract

The Dahongliutan granitic pluton, in the eastern part of the West Kunlun orogenic belt, provides significant insights for studying the tectonic evolution of West Kunlun. This paper presents a systematic study of LA-ICP-MS zircon U-Pb age, major and trace elements, Sr-Nd-Hf isotopes, and the first detailed Li isotope analysis of the Dahongliutan pluton. LA-ICP-MS zircon U-Pb dating shows that the Dahongliutan granites were emplaced in the Late Triassic ((213±2.1) Ma). Geochemical data show relatively high SiO2 contents (68.45 wt%–73.62 wt%) and aluminum saturation index (A/CNK=1.11–1.21) indicates peraluminous high-K calc-alkaline granite. The Dahongliutan granites are relatively high in light rare earth elements (LREE) and large ion lithophile elements (LILEs) (e.g., Rb, K, Th), and relatively depleted in high field strength elements (HFSEs) (e.g., Nb, Ta, P, Ti). The εNd(t) values range from −8.71 to −4.73, and (87Sr/86Sr)i=0.7087–0.71574. Zircons from the pluton yield 176Hf/177Hf values of 0.2826181 to 0.2827683, and εHf(t) values are around 0; the two-stage Hf model ages range from 0.974 to 1.307 Ga. The δ7Li values are 0.76‰–3.25‰, with an average of 2.53‰. Isotopic compositions of the pluton suggest a mixed trend between the partial melting of the Middle Proterozoic ancient crustal material and a juvenile mantle-derived material. This study infers that the Dahongliutan rock mass is formed in the post-collisional extension environment, when the collision between South Kunlun and the Tianshuihai terranes results in the closure of the Palaeo-Tethys. The mantle-derived magma results in partial melting of the lower crust.

Keywords

LA-ICP-MS zircon U-Pb age / petrogeochemistry / Li-Sr-Nd-Hf isotopic composition / Dahongliutan pluton / West Kunlun orogen / China

Cite this article

Download citation ▾
Kun Ding, Ting Liang, Xiu-qing Yang, Yi Zhou, Yong-gang Feng, Kan Li, Jia-xin Teng, Rui-ting Wang. Geochronology, petrogenesis and tectonic significance of Dahongliutan pluton in Western Kunlun orogenic belt, NW China. Journal of Central South University, 2020, 26(12): 3420-3435 DOI:10.1007/s11771-019-4264-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

XiaoW-J, WindleyB F, LiuD-Y, JianP, LiuC-Z, YuanC, SunM. Accretionary tectonics of the Western Kunlun orogen, China: A Paleozoic-Early Mesozoic, longlived active continental margin with implications for the growth of southern Eurasia [J]. The Journal of Geology, 2005, 113: 687-705

[2]

ZhangC-L, LuS-N, YuH-F, YeH-M. Tectonic evolution of the West Kunlun orogenic belt on the northern margin of the Qinghai-Xizang Plateau: Evidence from zircon SHRIMP and LA-ICP-MS dating [J]. Chinese Science (Series D), 2007, 37(2): 145-154 in Chinese)

[3]

MatteP, TapponnierP, ArnaudN, BourjotL, AvouacJ P, VidalP. Tectonics of Western Tibet, between the Tarim and the Indus [J]. Earth and Planetary Science Letters, 1996, 142(34): 311-330

[4]

PanY-SGeological evolution of the karakorum-kunlun mountain area [M], 2000, Beijing, Science Press(in Chinese)

[5]

WangZ-H. Tectonic evolution of the western Kunlun orogenic belt, western China [J]. Journal of Asian Earth Sciences, 2004, 24(2): 153-161

[6]

HanF-LEvolution and metallogenic background of the West Kunlun orogenic belt [D], 2006, Beijing, China University of Geosciences(in Chinese)

[7]

LiuZ, JiangY-H, JiaR-Y, ZhaoP, ZhouQ, WangG-C. Origin of Middle Cambrian and Late Silurian potassic granitoids from the western Kunlun orogen, northwest China: A magmatic response to the Proto-Tethys evolution [J]. Mineralogy Petrology, 2014, 108(1): 91-110

[8]

XiaoX-C, LiuX, GaoR, KaoH, LuoZ-H. Collision tectonics between the Tarim block (Basin) and the northwestern Tibet plateau: New observations from a multidisciplinary geoscientific investigation in the western Kunlun Moutains [J]. Acta Geologica Sinica, 2001, 75(2): 126-132

[9]

QiaoG-B, ZhangH-D, WuY-Z, JinM-X, WeiD, ZhaoX-J, ChenD-H. Geological and geochemical characteristics of the Dahongliutan rock mass in the West Kunlun Mountains and its constraints on the genesis of rocks [J]. Acta Geologica Sinica, 2015, 89(7): 1180-1194(in Chinese)

[10]

YanQ-H, QiuZ-W, WangH, WangM, WeiX-P, LiP, ZhangR-Q, LiC-Y, LiuJ-P. Age of the Dahongliutan rare metal pegmatite deposit, West Kunlun, Xinjiang (NW China): Constraints from LA-ICP-MS U-Pb dating of columbite-(Fe) and cassiterite [J]. Ore Geology Reviews, 2018, 100: 561-573

[11]

HuJ, WangN, HanH-W, WeiY, MuS-L. Analysis of the genesis of the Dahongliutan iron deposit in the Tianshuilun sweetwater block and its prospecting significance [J]. Geotectonics and Metallogenesis, 2016, 40(5): 949-959(in Chinese)

[12]

HuJ, WangH, HuangC-Y, TongL-X, MuS-L, QiuZ-W. Geological characteristics and age of the dahongliutan Fe-ore deposit in the western Kunlun orogenic belt, Xinjiang, northwestern China [J]. Journal of Asian Earth Sciences, 2016, 116: 1-25

[13]

WeiX-P, WangW, HuJ, MuS-L, QiuZ-W, YanQ-H, LiP. Geochemistry and geochronology of the Dayunliu granite in the West Kunlun Mountains and its geological significance [J]. Geochemistry, 2017, 46(1): 66-80(in Chinese)

[14]

ZhangQ-C, LiuY, WuZ-H, HuangH, LiK, ZhouQ. Late Triassic granites from the northwestern margin of the Tibetan Plateau, the Dahongliutan example: Petrogenesis and tectonic implications for the evolution of the Kangxiwa Palaeo-Tethys [J]. International Geology Review, 2019, 61(2): 175-194

[15]

XiaoW-Y, HouQ-L, LiJ-L, WindleyB F, HaoJ, FangA-M, ZhouH, WangZ-H, ChenH-L, ZhangG-C, YuanC. Tectonic facies and the archipelago-accretion process of the West Kunlun, China [J]. Science China Earth Sciences, 2000, 43(1): 134-143

[16]

DuH-XThe study of ore-forming characters and prospecting orientation of lead-zinc deposits from Chalukou to Tianshuihai ranges in west Kunlun, Xinjiang [D], 2014, Beijing, China University of Geosciences(in Chinese)

[17]

ZhangY, NiuY-L, HuY, LiuJ-J, YeL, KongJ-J, DuanM. The syncollisional granitoid magmatism and continental crust growth in the West Kunlun Orogen, China-evidence from geochronology and geochemistry of the Arkarz pluton [J]. Lithos, 2016, 245(12): 191-204

[18]

RobinsonA C. Geologic offsets across the northern Karakorum fault: Implications for its role and terrane correlations in the western Himalayan-Tibetan orogen [J]. Earth and Planetary Science Letters, 2009, 279(1): 123-130

[19]

LiuZ, JiangY-H, JiaR-Y, ZhaoP, ZhouQ. Origin of late Triassic high-k calc-alkaline granitoids and their potassic microgranular enclaves from the western Tibet plateau, northwest China: Implications for paleo-tethys evolution [J]. Gondwana Research, 2015, 27(1): 326-341

[20]

WangC, LiuL, KorhonenF, YangW-Q, CaoY-T, HeS-P, ZhuX-H, LiangW-T. Origins of Early Mesozoic granitoids and their enclaves from West Kunlun, NW China: Implications for evolving magmatism related to closure of the Paleo-Tethys ocean [J]. International Journal of Earth Sciences, 2015, 105(3): 1-24

[21]

LiuY-S, HuZ-C, ZongK-Q, GaoC-G, GaoS, XuJ, ChenH-H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICPMS [J]. Chinese Sci Bull, 2010, 55(15): 1535-1546

[22]

LUDWIG K R. User’s manual for Isoplot 3.0: A geochronological toolkit for Microsoft excel [M]. Berkeley Geochronological Center, Special Publication 4, 2003.

[23]

YuanH-L, GaoS, DaiM-N, ZongC-L, GüntherD, FontaineG H. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS [J]. Chemical Geology, 2008, 247: 100-118

[24]

ZhangH-F, GaoS, ZhongZ-Q, ZhangB-R, ZhangL, HuS-H. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids: constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China [J]. Chemical Geology, 2002, 186(3): 281-299

[25]

NishioY, NakaiS. Accurate and precise lithium isotopic determinations of igneous rock samples using multi-collector inductively coupled plasma mass spectrometry [J]. Analytica Chimica Acta, 2002, 456(2): 271-281

[26]

BrantC, CooganL A, GillisK M, SeyfriedW E, PesterN J, SpenceJ. Lithium and Li-isotopes in young altered upper oceanic crust from the East Pacifc Rise [J]. Geochimica Cosmochimica Acta, 2012, 96(11): 272-293

[27]

KingP L, ChappellB W, AllenC M, WhiteA J. Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite [J]. Journal of the Geological Society of Australia, 2001, 48(4): 501-514

[28]

ChappellB W, WhiteA J R. Two contrasting granite types: 25 years later [J]. Journal of the Geological Society of Australia, 2001, 48(4): 489-499

[29]

ManiarP D, PiccoliP M. Tectonic discrimination of granitoids [J]. Geological Society of America Bulletin, 1989, 101(5): 635-643

[30]

PeccerilloA, TaylorS R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey [J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81

[31]

PearceJ A, HarrisN B W, TindleA G. Trace-elementdiscrimination diagrams for the tectonic interpretation of graniticrocks [J]. Journal of Petrology, 1984, 25(4): 956-983

[32]

SunS S, McdonoughW F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [J]. Geological Society London Special Publications, 1989, 42(1): 313-345

[33]

StilleP, SteigerR H. Hf isotope systematics in granitoids from the central and southern Alps [J]. Contributions to Mineralogy & Petrology, 1991, 107(3): 273-278

[34]

SylvesterP J. Post-collisional strongly peraluminous granites [J]. Lithos, 1998, 45: 29-44

[35]

XiaoQ-HResearch thinking and method of granite [M], 2002, Beijing, China, Geological Publishing House(in Chinese)

[36]

TangY-J, ZhangH F, NakamuraE, MorigutiT, KobayashiK, YingJ F. Lithium isotopic systematics of peridotite xenoliths from Hannuoba, north China craton: Implications for melt-rock interaction in the considerably thinned lithospheric mantle [J]. Geochimica et Cosmochimica Acta, 2007, 71(17): 4327-4341

[37]

NishioY, NakaiS, YamamotoJ, SuminoH, MatsumotoT, PrikhodkoV S. Lithium isotopic systematics of the mantle-derived ultramafic xenoliths: Implications for EM1 origin [J]. Earth & Planetary Science Letters, 2004, 217(34): 245-261

[38]

DefantM J, ClarkL F, StewartR H, DrummondM S, BoerJ Z D, MauryR C. Andesite and dacite genesis via contrasting processes: The geology and geochemistry of EI valle volcano, Panama [J]. Contributions to Mineralogy Petrology, 1991, 106(3): 309-324

[39]

SongW, WangJ, LiuJ-L, BaoZ-Y. Geochemical characteristics and research significance of intrusive rocks and zircons in the indosinian period of the west kunlun mountains and the indosinian [J]. Journal of Jilin University: Earth Science Edition, 2015, 45(5): 1418-1435(in Chinese)

[40]

KangL, XiaoP-X, GaoX-F, QiR-G, GuoL, DongZ-C. Geochemical characteristics and petrogenesis of Muztagata intrusion in Western Kunlun orogenic belt and their tectonic significance [J]. Geological Bulletin of China, 2012, 31(12): 2001-2014(in Chinese)

[41]

ZhangQ-C, WuZ-H, LiW, HuangH, LiuW, LiuZ-W. Pb-Hf isotope composition, petrogenesis and source characteristics of the Alamas rock mass in the eastern segment of the West Kunlun orogenic belt [J]. Journal of Geology, 2017, 91(12): 2667-2678(in Chinese)

[42]

ZHU Jie, LI Qiu-gen, WANG Zong-qi, TANG Hao-shu, CHEN Xu, XIAO Bing. Early Cambrian granitoids in the sweet waters of the West Kunlun Mountains and their tectonic significance [J]. Northwest Geology, 2016(4): 1–18. (in Chinese)

[43]

CaoY, WangJ, LiuJ-G, BaoZ-Y, SongW, LiA. Genesis and geological significance of Adakite rocks in the Early Paleozoic magmatic arc Datong rock mass in West Kunlun [J]. Journal of Jilin University: Earth Science Edition, 2016, 46(2): 425-442(in Chinese)

[44]

DENG Jin-fu. Rock genesis, tectonic setting and mineralization [M]. Geological Publishing House, 2004. (in Chinese)

[45]

BarbarinB. A review of the relationships between granitoid types, their origins and their geodynamic environments [J]. Lithos, 1999, 46(3): 605-626

[46]

DuchesneJ C, BerzaT, LiégeoisJ P, AuweraJ V. Shoshonitic liquid line of descent from diorite to granite:the late Precambrian post-collisional Tismana pluton (south Carpathians, Romania) [J]. Lithos, 1998, 45(1–4): 281-303

[47]

LuJ-Y, YuX-F, SunF-Y, ChenJ, LiB-L, QianW. Study on zircon U-Pb dating and ore-forming fluid characteristics of the Bandursi hot copper ore deposit in West Kunlun [J]. Acta Petrologica Sinica, 2015, 31(9): 2696-2706(in Chinese)

[48]

JiangY-H, JiaR-Y, LiuZ, LiaoS-Y, ZhaoP, ZhouQ. Origin of Middle Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Kunlun orogen, northwest China: A record of the closure of Paleo-Tethys [J]. Lithos, 2013, s156–159(1): 13-30

[49]

MattemF, SchneiderW. Suturing of the Proto- and Paleo-Tethys oceans in the western Kunlun (Xinjiang, China) [J]. Journal of Asian Earth Sciences, 2000, 18: 637-650

[50]

ZhangC-L, YuH-F, WangA-G, GuoK-Y. Age determination of the Triassic two types of granites in the western segment of West Kunlun and its tectonic significance [J]. Journal of Geology, 2005, 79(5): 645-652(in Chinese)

[51]

LiaoS-Y, JiangY-H, YangW-Z, ZhouQ, JinG-D, ZhaoP. Subducting sediment-derived arc granitoids: Evidence from the datong pluton and its quenched enclaves in the western kunlun orogen, northwest china [J]. Mineralogy & Petrology, 2010, 100(12): 55-74

[52]

LiuZ, JiangY-H, JiaR-Y, ZhaoP, ZhouQ. Origin of Late Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Tibet Plateau, northwest China: Implications for Paleo- Tethys evolution [J]. Gondwana Research, 2015, 27(1): 326-341

AI Summary AI Mindmap
PDF

194

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/