Preparation of defect free ceramic/Ti composite membranes by surface modification and in situ oxidation

Dong-qiang Zhang , Ping Yang , Jian-yang Wu , Jing Zhao , Yan-an Chen

Journal of Central South University ›› 2020, Vol. 26 ›› Issue (12) : 3295 -3304.

PDF
Journal of Central South University ›› 2020, Vol. 26 ›› Issue (12) : 3295 -3304. DOI: 10.1007/s11771-019-4253-x
Article

Preparation of defect free ceramic/Ti composite membranes by surface modification and in situ oxidation

Author information +
History +
PDF

Abstract

Al2O3 ceramic powder was applied to modify the large pores defects on the surface of the porous metal Ti support, in situ oxidation method was a convenient method to prepare defect free ceramic/Ti composite membranes on this basis. In situ oxidation conditions experimental results show that the best condition for preparing the TiO2-Al2O3/Ti composite membrane is under 800 °C for 2 h, and the microstructure and pore sizes of the TiO2-Al2O3/Ti composite membranes are affected obviously. The thickness and composition of the TiO2/Ti composite membranes are determined by SEM and XRD completely. The pore size distribution of the composite membrane is measured by bubble pressure method, the most probable aperture is about 3.12 µm, while the average pore size of defect free TiO2-Al2O3/Ti is about 3.23 µm. After ultrasonic treatment, the slight weight change of membranes reveals no observable change, which indicates that TiO2-Al2O3/Ti composite membranes maintain a good stability.

Keywords

porous Ti / ceramic / TiO2 layer / in situ oxidation / composite membrane / surface modification

Cite this article

Download citation ▾
Dong-qiang Zhang, Ping Yang, Jian-yang Wu, Jing Zhao, Yan-an Chen. Preparation of defect free ceramic/Ti composite membranes by surface modification and in situ oxidation. Journal of Central South University, 2020, 26(12): 3295-3304 DOI:10.1007/s11771-019-4253-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CHEN Fang-lin, FANG Shu-min, BRINKMAN K S. Chemically stable ceramic-metal composite membrane for hydrogen separation: USA, US 9687775 B2 [P]. 2017-06-27.

[2]

NovikovV I, SharapaevA I, PetuninA B, MuradovaA G. An increase in abrasive resistance of composite metal ceramic membranes with selective layers based on oxide ceramics [J]. Theoretical Foundations of Chemical Engineering, 2016, 50(5): 827-830

[3]

NovikovV I, SharapaevA I, KorostyleyD A, Kuz’MinA V. Preparation of metal-ceramic membranes based on the powder of titanium and titanium dioxide [J]. Theoretical Foundations of Chemical Engineering, 2016, 50(5): 822-826

[4]

SukantaC, Md RushdieI I, AmitS, RamachandraL S, ReidS R. A computational framework for modeling impact induced damage in ceramic and ceramic-metal composite structures [J]. Composite Structures, 2017, 164: 263-276

[5]

BowkerM, JamesD, StoneP, PerkinsN, MillardL, GreavesJ, DickinonsA. Catalysis at the metal-support interface: Exemplified by the photocatalytic reforming of methanol on Pd/TiO2 [J]. Journal of Catalysis, 2003, 217(2): 427-433

[6]

MaY H, AkisB C, AythurkM E, GuazzoneF. Characterization of intermetallic diffusion barrier and alloy formation for Pd/Cu and Pd/Ag porous stainless steel composite membranes [J]. Industrial & Engineering Chemistry Research, 2004, 43(12): 2936-2945

[7]

PolfusJ M, XingW, FontaineM L, DenonvilleC, HenriksenP P, BredesenR. Hydrogen separation membranes based on dense ceramic composites [J]. Journal of Membrane Science, 2015, 479: 39-45

[8]

MontaleoneDaniel, MercadelliElisa, GondoliniAngela, PinascoPaola, SansonAlessandra. On the compatibility of dual phase BaCe0.65Zr0.2Y0.15O3-based membrane for hydrogen separation application. Ceramics International, 2017, 43(13): 10151-10157

[9]

LangeR S A D, HekkinkJ H A, KeizerK, BurggraafA A. Formation and characterization of supported microporous ceramic membranes prepared by sol-gel modification techniques [J]. Journal of Membrane Science, 2017, 99(1): 57-75

[10]

ElgamouzA, TijaniN. From a naturally occurring material (clay mineral) to the production of porous ceramic membranes [J]. Microporous & Mesoporous Materials, 2018, 271: 52-58

[11]

NguyenH Q, DeporterD A, PilliarR M, ValiquetteN, YakubovichR. The effect of sol-gel formed calcium phosphate coatings on bone ingrowth and osteoconductivity of porous-surfaced Ti alloy implants [J]. Biomaterials, 2004, 25(5): 865-876

[12]

LiJ, YuH, ShiQ-N, LiuL-G, RenW-B. Hot deformation behavior of pure titanium and its application in hot sheet finish rolling [J]. Journal of Central South University: Science and Technology, 2016, 47(6): 1889-1895(in Chinese)

[13]

WenY-H, ZhuG-M, DaiS-Y, KangY-L. Effect of Ti on microstructure and strengthening behavior in press hardening steels [J]. Journal of Central South University, 2017, 24(10): 2215-2221

[14]

LiL-H, HuangZ-P, FanX-X, ZhangZ, DouR-N, WenS-L, ChenY, ChenY-C, HuY-Y. Preparation and characterization of a Pd modified Ti/SnO2-Sb anode and its electrochemical degradation of Ni-EDTA [J]. Electrochimica Acta, 2017, 231: 354-362

[15]

Metikoš-HukovićM, TkalčecE, KwokalA, PiljacJ. An in vitro study of Ti and Ti-alloys coated with sol-gel derived hydroxyapatite coatings [J]. Surface & Coatings Technology, 2003, 165(1): 40-50

[16]

LvD-S, XuJ-H, DingW-F, FuY-C, YangC-Y, SuH-H. Tool wear in milling Ti40 burn-resistant titanium alloy using pneumatic mist jet impinging cooling [J]. Journal of Materials Processing Tech, 2016, 229: 641-650

[17]

JiangD-L, ZhangS-Q, ZhaoH-J. Photocatalytic degradation characteristics of different organic compounds at TiO2 nanoporous film electrodes with mixed anatase/rutile phases [J]. Environmental Science & Technology, 2007, 41(1): 303-308

[18]

BagheriS, HirZ A M, YousefiA T, HamidS B A. Progress on mesoporous titanium dioxide: synthesis, modification and applications [J]. Microporous & Mesoporous Materials, 2015, 218: 206-222

[19]

YongZ, ZhangX-T, ZhaiJ, HeJ-L, JiangL, LiuZ-Y, NishimotoS, MurakarmiT, FujishimaA, ZhuD-B. Enhanced photocatalytic activity of hierarchically micro/nano-porous TiO2 films [J]. Applied Catalysis B-Environmental, 2008, 83(1): 24-29

[20]

ChoiH, SofrankoA C, DionysiouD D. Nanocrystalline TiO2 photocatalytic membranes with a hierarchical mesoporous multilayer structure: Synthesis, characterization, and multifunction [J]. Advanced Functional Materials, 2010, 16(8): 1067-1074

[21]

ParkJ H, KimS, BardA J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solarwater splitting [J]. Nano Lett, 2006, 6(1): 24-28

[22]

DuZ-M, HanZ-Y, YaoQ, ZhangY-H. Research progress of titanium dioxide anode in dye-sensitized solar cells [J]. Transactions of Beijing Institute of Technology, 2015, 35(2): 111-117

[23]

ChenY-S, CrittendenJ C, HackneyS, SutterL, HandD W. Preparation of a novel TiO2-based p-n junction nanotube photocatalyst [J]. Environmental Science & Technology, 2005, 39(5): 1201-1208

[24]

GongQ, YinL-S, GuoZ-B, YangS-Y, AnK-Y. Titanium oxide nanotube arrays prepared by anodic oxidation method and photocatalytic degradation of chloramine phosphorus [J]. Journal of Central South University: Science and Technology, 2011, 42(11): 3270-3276(in Chinese)

[25]

ZhuJ, FanY-Q, XuN-P. Modified dip-coating method for preparation of pinhole-free ceramic membrane [J]. Journal of Membrane Science, 2011, 367(12): 14-20

[26]

UchikoshiT, KreethawateL, MatsunagaC. Fabrication of ceramic membranes on porous ceramic supports by electrophoretic deposition [J]. Advances in Applied Ceramics, 2014, 113(1): 3-7

[27]

ZhangXiaoyu, ZhangBing, WuYonghong, WangTonghua, QiuJieshan. Preparation and characterization of a diatomite hybrid microfiltration carbon membrane for oily wastewater treatment. Journal of the Taiwan Institute of Chemical Engineers, 2018, 89: 39-48

[28]

GestelV T, SeboldD, MeulenbergW A, BramM, BuchkremeH P. Manufacturing of new nano-structured ceramic metallic composite mieroporous membranes consisting of ZrO2, Al2O3, TiO2 and stainless steel [J]. Solid State Ionics, 2008, 179: 1360-1366

[29]

MeulenberW A, MertensJ, BramM, BuchkremeH P, StöverD. Graded porous titania membranes for microfiltration [J]. Journal of the European Ceramic Society, 2006, 26: 449-454

[30]

ZhangD-Q, WuJ-Y, LiB, FanY-Q. Preparation of ceramic membranes on Ti-Al alloy supports by an in-situ oxidation method [J]. Journal of Membrane Science, 2015, 476: 554-560

[31]

WuY-H, LongM, CaiW-M, DaiS-D, ChenC, WuD-Y, BaiJ. Preparation of photocatalytic anatase nanowire films by in situ oxidation of titanium plate [J]. Nanotechnology, 2009, 20(18): 185703

[32]

ZhangD-Q, ZhouS-Y, FanY-Q, XuN-P, HeY-H. Preparation of dense Pd composite membranes on porous Ti-Al alloy supports by electroless plating [J]. Journal of Membrane Science, 2012, 387124-29

[33]

YuJ, HuX-J, HuangY. A modification of the bubble-point method to determine the pore-mouth size distribution of porous materials [J]. Separation & Purification Technology, 2010, 70(3): 314-319

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/