Adomian decomposition method simulation of von Kármán swrling bioconvection nanofluid flow

M D Shamshuddin , S R Mishra , O Anwar Beg , A Kadir

Journal of Central South University ›› 2019, Vol. 26 ›› Issue (10) : 2797 -2813.

PDF
Journal of Central South University ›› 2019, Vol. 26 ›› Issue (10) : 2797 -2813. DOI: 10.1007/s11771-019-4214-4
Article

Adomian decomposition method simulation of von Kármán swrling bioconvection nanofluid flow

Author information +
History +
PDF

Abstract

The study reveals analytically on the 3-dimensional viscous time-dependent gyrotactic bioconvection in swirling nanofluid flow past from a rotating disk. It is known that the deformation of the disk is along the radial direction. In addition to that Stefan blowing is considered. The Buongiorno nanofluid model is taken care of assuming the fluid to be dilute and we find Brownian motion and thermophoresis have dominant role on nanoscale unit. The primitive mass conservation equation, radial, tangential and axial momentum, heat, nano-particle concentration and micro-organism density function are developed in a cylindrical polar coordinate system with appropriate wall (disk surface) and free stream boundary conditions. This highly nonlinear, strongly coupled system of unsteady partial differential equations is normalized with the classical von Kármán and other transformations to render the boundary value problem into an ordinary differential system. The emerging 11th order system features an extensive range of dimensionless flow parameters, i.e., disk stretching rate, Brownian motion, thermophoresis, bioconvection Lewis number, unsteadiness parameter, ordinary Lewis number, Prandtl number, mass convective Biot number, Péclet number and Stefan blowing parameter. Solutions of the system are obtained with developed semi-analytical technique, i.e., Adomian decomposition method. Validation of the said problem is also conducted with earlier literature computed by Runge-Kutta shooting technique.

Keywords

nanofluids / bioconvection / rotating disk bioreactors / von Kármán swirling flow / Stefan blowing / Adomian decomposition method (ADM)

Cite this article

Download citation ▾
M D Shamshuddin, S R Mishra, O Anwar Beg, A Kadir. Adomian decomposition method simulation of von Kármán swrling bioconvection nanofluid flow. Journal of Central South University, 2019, 26(10): 2797-2813 DOI:10.1007/s11771-019-4214-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MaH T, ZhangY F, DengN. Mass transfer characteristics from a rotating cylinder [C]. HEFAT 2008 6th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, 2008

[2]

MohantyA K, TawfekA A, PrasadB V S S. Heat transfer from a rotating cylinder in crossflow [J]. Experimental Thermal and Fluid Science, 1995, 10: 54-61

[3]

Anwar BégO, PrasadV R, VasuB, GorlaR S R. Computational modelling of magnetohydrodynamic convection from a rotating cone in orthotropic Darcian porous media [J]. Journal of Brazilian Society of Mechanical Science Engineering, 2017, 39: 2035-2054

[4]

SubhashiniS V, TakharH S, NathG. Non-uniform mass transfer or wall enthalpy into a compressible flow over a rotating sphere [J]. Heat and Mass Transfer, 2007, 43(11): 1133-1141

[5]

TakharH S, WhitelawM H. Higher order heat transfer from a rotating sphere [J]. Acta Mechanica, 1978, 30: 101-109

[6]

FranceschiniE A, LacconiG I, CortiH R. Kinetics of hydrogen evolution reaction on nickel modified by spontaneous Ru deposition: A rotating disk electrode and impedance spectroscopy approach [J]. International Journal of Hydrogen Energy, 2016, 41(5): 3326-3338

[7]

TangT, LiK, YingD, SunT, WangY, JaiJ. High efficient aqueous-film rotating disk photocatalytic fuel cell (RDPFC) with triple functions: Cogeneration of hydrogen and electricity with dye degradation [J]. International Journal of Hydrogen Energy, 2014, 39(19): 10258-10266

[8]

PeevG, PeshavD, NikolovaA. Gas absorption in a thin liquid film flow on a horizontal rotating disk [J]. Heat and Mass Transfer, 2007, 43(8): 843-848

[9]

KármánT V. Uber laminare und turbulent Reibung [J]. ZAMM, 1921, 1: 233-252

[10]

GreenspanHThe theory of rotating fluids [M], 1968, New York, Cambridge University Press

[11]

ShevchukI VConvective heat and mass transfer in rotating disk systems [M], 2009, New York, Springer

[12]

Gambaryan-RoismanT, StephanP. Hydrodynamics and heat transfer in a liquid film flowing over a spinning disk with specific wall topography [C]. ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, 2011

[13]

HelcigC, WiescheS A D. Effect of Prandtl number on the heat transfer from a rotating disk: An experimental study [C]. ASME 2016 Heat Transfer Summer Conference, 2016, Washington DC, USA, ASME

[14]

ChoiS U S. Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian Flows [C]. American Society of Mechanical Engineers, 199599105

[15]

BuongiornoJ. Convective transport in nanofluids [J]. Asme Journal of Heat Transfer, 2006, 128(3): 240-250

[16]

DasS K, ChoiS U S, YuW, PradeepTNanofluids: Science and Technology [M], 2007, New York, John Wiley

[17]

TurkyilmazogluM. Nanofluid flow and heat transfer due to a rotating disk [J]. Computers & Fluids, 2014, 94: 139-146

[18]

HayatT, ImtiazM, AlsaediA, AlzahraniF. Effects of homogeneous-heterogeneous reactions in flow of magnetite-Fe3O4 nanoparticles by a rotating disk [J]. Journal of Molecular Liquids, 2016, 216: 845-855

[19]

RazaJ, RohiniA M, OmarZ, AwaisM. Heat and mass transfer analysis of MHD nanofluid flow in a rotating channel with slip effects [J]. Journal of Molecular Liquids, 2016, 219: 703-708

[20]

ChakrabortyT, DasK, KunduP K. Framing the impact of external magnetic field on bioconvection of a nanofluid flow containing gyrotactic microorganism with convective boundary conditions [J]. Alexandria Engineering Journal, 2016, 57(1): 61-71

[21]

XunS, ZhaoJ, ZhengL, ZhengX. Bio convection in rotating system immersed in nanofluid with temperature dependent viscosity and thermal conductivity [J]. International Journal of Heat and Mass Transfer, 2017, 111: 1001-1006

[22]

Anwar BégO, BasirM F M, UddinM J, IsmailA I M. Numerical study of slip effects on asymmetric bio convective nanofluid flow in a porous microchannel with an expanding/contracting upper wall using Buongiorno’s model [J]. Journal of Mechanics in Medicine and Biology, 2017, 17(5): 17500591

[23]

LiJ J, LuH, RaeesA, ZhaoQ K. Unsteady mixed bio convection flow of a nanofluid between two contracting or expanding rotating discs [J]. Zeitschrift für Naturforschung A, 2017, 7131-12

[24]

ImtiazM, HayatT, AlsaediA, AhmadB. Convective flow of carbon nanotubes between rotating stretchable disks with thermal radiation effects [J]. International Journal of Heat and Mass Transfer, 2016, 101: 948-957

[25]

HayatT, QayyumS, ImtiazM, AlzahraniF, AlsaediA. Partial slip effect in flow of magnetite-Fe3O4 nanoparticles between rotating stretchable disks [J]. Journal of Magnetism and Magnetic Materials, 2016, 413: 39-48

[26]

HayatT, QayyumS, ImtiazM, AlzahraniF, AlsaediA. Radiative flow due to stretchable rotating disk with variable thickness [J]. Results in Physics, 2017, 7: 156-165

[27]

AhmedN, AdnanU S T. Influence of shape factor on flow of magneto-nanofluid squeezed between parallel disk [J]. Alexandria Engineering Journal, 2017

[28]

MushtaqA, MustafaM. Computations for nanofluid flow near a stretchable rotating disk with axial magnetic field and convective conditions [J]. Results in Physics, 2017, 7: 3137-3144

[29]

ChenH, ChenJ, GengY, ChenK. Three-dimensional boundary layer flow over a rotating disk with power-law stretching in a nanofluid containing gyrotactic microorganisms [J]. Heat Transfer-Asian Research, 2017, 47(3): 569-582

[30]

LatiffN A, UddinM J, IsmailA I M. Stefan blowing effect on bio convective flow of nanofluid over a solid rotating stretchable disk [J]. Propulsion and Power Research, 2016, 5(4): 267-278

[31]

WatsonL T, WangC Y. Deceleration of a rotating disk in a viscous fluid [J]. Physics of Fluids, 1979, 22: 2267-2275

[32]

ShamshuddinM D, AnwarB, EgO, SunderR, AmM, KadirA. Finite element computation of multi-physical micropolar transport phenomena from an inclined moving plate in porous media [J]. Indian Journal of Physics, 2017, 92(2): 215-230

[33]

ZohraF T, UddinM J, IsmailA I M, AnwarB, EgO, KadirA. Anisotropic slip magneto-bio convection flow from a rotating cone to a nanofluid with Stefan blowing effects [J]. Chinese J Phys, 2017, 56(1): 432-448

[34]

DanielY S, DanielS K. Effects of buoyancy and thermal radiation on MHD flow over a stretching porous sheet using homotopy analysis method [J]. Alexandria Engineering Journal, 2015, 54(3): 705-712

[35]

BhattiM M, ShahidA, AnwarB, EgO, KadirA. Numerical study of radiative Maxwell viscoelastic magnetized flow from a stretching permeable sheet with the Cattaneo-Christov heat flux model [M]. Neural Computing & Applic, 2017, 30(11): 3467-3478

[36]

AdomianGSolving frontier problems in physics: The decomposition method [M], 1994, Dordrecht, USA, Kluwer

[37]

HaqF, ShahK, GhausU, RrahmanM. Numerical solution of fractional order smoking model via Laplace Adomian decomposition method [J]. Alexandria English Journal, 2017, 57(2): 1061-1069

[38]

AnwarB, EgO, TripathiD, SochiT, GuptaP K. Adomian decomposition method (ADM) simulation of magneto-bio-tribological squeeze film with magnetic induction effects [J]. Journal of Mechanics Medicine Biology, 2015, 15: 1550072

[39]

AhlerstenKAn introduction to MATLAB [M], 2015

[40]

EvansD J. The rotationally symmetric flow of a viscous fluid in the presence of an infinite rotating disc with uniform suction [J]. Quarterly Journal of Mechanics and Applied Mathematics, 1969, 22(4): 467-485

[41]

FangT, TaoH. unsteady viscous flow over a rotating stretchable disk with deceleration [J]. Communication in Nonlinear Science and Numerical Simulations, 2012, 17(12): 5064-5072

[42]

SiddiqaS, Gul-e-hinaN, SaleemS, HossainM A, GorlaR S R. Numerical solutions of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone [J]. International Journal of Heat and Mass transfer, 2016, 101608-613

[43]

SiddiqaS, SulaimanM, HossainM A, IslamS, GorlaR S R. Gyrotactic bioconvection flow of a nanofluid past a vertical wavy surface [J]. International Journal of Thermal Sciences, 2016, 108: 244-250

[44]

BegumN, SiddiqaS, HossainM A. Nanofluid bioconvection with variable thermophysical properties [J]. Journal of Molecular Liquids, 2017, 231: 325-332

[45]

SainiS, SharmaY D. Analysis of onset of bio-thermal convection in a fluid containing gravitactic microorganism by the energy method [J]. Chinese Journal of Physics, 2018, 56(5): 2031-2038

[46]

SainiS, SharmaY D. Analysis of onset of bio-thermal convection in a fluid containing gravitactic microorganism by the energy method [J]. Chinese Journal of Physics, 2018, 56(5): 2031-2038

[47]

SainiS, SharmaY D. A bio-thermal convection in waterbased nanofluid containing gyrotactic microorganism: Effect of vertical throughflow [J]. Journal of Applied Fluid Mechanics, 2018, 11(4): 895-903

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/