Effect of composition and aging time on hardness and wear behavior of Cu-Ni-Sn spinodal alloy

S. Ilangovan , R. Vaira Vignesh , R. Padmanaban , J. Gokulachandran

Journal of Central South University ›› 2019, Vol. 26 ›› Issue (10) : 2634 -2642.

PDF
Journal of Central South University ›› 2019, Vol. 26 ›› Issue (10) : 2634 -2642. DOI: 10.1007/s11771-019-4200-x
Article

Effect of composition and aging time on hardness and wear behavior of Cu-Ni-Sn spinodal alloy

Author information +
History +
PDF

Abstract

Copper alloyed with various compositions of nickel and tin were cast into molds under argon atmosphere. The cast rods were homogenized, solution heat treated, followed by aging for different time duration. The specimens were characterized for microstructure and tested for microhardness and wear rate. A hybrid model with a linear function and radial basis function was developed to analyze the influence of nickel, tin, and aging time on the microhardness and tribological behavior of copper-nickel-sin alloy system. The results indicate that increase in the composition of nickel and tin increases the microhardness and decreases the wear rate of the alloy. The increase in the concentration of nickel and tin decreases the peak aging time of the alloy system.

Keywords

spinodal decomposition / microhardness / wear / radial basis function / model

Cite this article

Download citation ▾
S. Ilangovan, R. Vaira Vignesh, R. Padmanaban, J. Gokulachandran. Effect of composition and aging time on hardness and wear behavior of Cu-Ni-Sn spinodal alloy. Journal of Central South University, 2019, 26(10): 2634-2642 DOI:10.1007/s11771-019-4200-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

IlangovanS, SellamuthuR. Measurement of the variation of mechanical properties with aging temperatures for sand cast Cu-5Ni-5Sn alloy [J]. Journal of Engineering Science and Technology, 2016, 11(11): 1609-1619

[2]

DitchekB, SchwartzL H. Diffraction study of spinodal decomposition in Cu-10 wt%Ni-6 wt% Sn [J]. Acta Metall, 1980, 28(6): 807-822

[3]

SchwartzL H, MahajanS, PlewesJ T. Spinodal decomposition in a Cu-9 wt% Ni-6 wt% Sn alloy [J]. Acta Metall, 1974, 22(5): 601-609

[4]

SchwartzL H, PlewesJ T. Spinodal decomposition in Cu-9wt% Ni-6wt% Sn—II. A critical examination of mechanical strength of spinodal alloys [J]. Acta Metall, 1974, 22(7): 911-921

[5]

BaburajE G, KulkarniU D, MenonE S K, KrishnanR. Initial stages of decomposition in Cu-9Ni-6Sn [J]. J Appl Crystallogr, 1979, 12(5): 476-480

[6]

KatoM, MoriT, SchwartzL H. Hardening by spinodal modulated structure [J]. Acta Metall, 1980, 28(3): 285-290

[7]

SinghJ B, CaiW, BellonP. Dry sliding of Cu–15 wt%Ni–8 wt%Sn bronze: Wear behaviour and microstructures [J]. Wear, 2007, 263(1): 830-841

[8]

IlangovanS, Vaira VigneshR, PadmanabanR, GokulachandranJ. Comparison of statistical and soft computing models for predicting hardness and wear rate of Cu-Ni-Sn alloy [C]// Progress in Computing, Analytics and Networking. Advances in Intelligent Systems and Computing, 2018559571

[9]

DiánezM, DonosoE, SayaguésM, PerejónA, Sánchez-JiménezP, Pérez-MaquedaL, CriadoJ. The calorimetric analysis as a tool for studying the aging hardening mechanism of a Cu-10 wt% Ni-5.5 wt% Sn alloy [J]. J Alloys Compd, 2016, 688(1): 288-294

[10]

DonosoE, DiánezM, PerejónA, SánchezjiménezP, Pérez-MaquedaL, SayaguésM, CriadoJ. Microcalorimetry: A powerful tool for quantitative analysis of aging hardening response of Cu-Ni-Sn alloys [J]. J Alloys Compd, 2017, 694(1): 710-714

[11]

IlangovanS, SellamuthuR. An investigation of the effect of Ni content and hardness on the wear behaviour of sand cast Cu–Ni–Sn alloys [J]. Int J Microstruct Mater Prop, 2012, 7(4): 316-328

[12]

ZhangS, JiangB, DingW. Dry sliding wear of Cu–15Ni–8Sn alloy [J]. Tribol Int, 2010, 43(1): 64-68

[13]

LeiQ, LiZ, GaoY, PengX, DerbyB. Microstructure and mechanical properties of a high strength Cu-Ni-Si alloy treated by combined aging processes [J]. J Alloys Compd, 2017, 695(1): 2413-2423

[14]

WangY, ZhangL, XiaoJ, ChenW, FengC, GanX, ZhouK. The tribo-corrosion behavior of Cu-9 wt% Ni-6 wt% Sn alloy [J]. Tribol Int, 2016, 94(1): 260-268

[15]

RamalingamV V, RamasamyP. Modelling corrosion behavior of friction stir processed aluminium alloy 5083 using polynomial: Radial basis function [J]. Trans Indian Inst Met, 2017, 70(10): 2575-2589

[16]

Vaira VigneshR, PadmanabanR. Influence of friction stir processing parameters on the wear resistance of aluminium alloy AA5083 [J]. Mater Today: Proc, 2018, 5(2): 7437-7446

[17]

ZhaoD M, DongQ M, LiuP, KangB X, HuangJ L, JinZ H. Structure and strength of the age hardened Cu–Ni–Si alloy [J]. Mater Chem Phys, 2003, 79(1): 81-86

[18]

ZhangS Z, JiangB H, DingW J. Wear of Cu–15Ni–8Sn spinodal alloy [J]. Wear, 2008, 264(3): 199-203

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/