Integrated yaw and rollover control based on differential braking for off-road vehicles with mechanical elastic wheel
Hai-qing Li , You-qun Zhao , Fen Lin , Zhen Xiao
Journal of Central South University ›› 2019, Vol. 26 ›› Issue (9) : 2354 -2367.
Integrated yaw and rollover control based on differential braking for off-road vehicles with mechanical elastic wheel
Aiming at the issue of yaw and rollover stability control for off-road vehicles with non-pneumatic mechanical elastic wheel (MEW), an integrated control system based on fuzzy differential braking is developed. By simplifying the structure of the MEW, a corresponding fitting brush tire model is constructed and its longitudinal and lateral tire force expressions are set up, respectively. Then, a nonlinear vehicle simulation model with MEW is established to validate the proposed control scheme based on Carsim. The designed yaw and rollover control system is a two-level structure with the upper additional moment controller, which utilizes a predictive load transfer ratio (PLTR) as the rollover index. In order to design the upper integrated control algorithm, fuzzy proportional-integral-derivative (PID) is adopted to coordinate the yaw and rollover control, simultaneously. And the lower control allocator realizes the additional moment to the vehicle by differential braking. Finally, a Carsim-simulink co-simulation model is constructed, and simulation results show that the integrated control system could improve the vehicle yaw and roll stability, and prevent rollover happening.
integrated control / rollover stability / yaw stability / active braking / fuzzy control / co-simulation / mechanical elastic wheel
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
/
| 〈 |
|
〉 |