A review on spatial self-phase modulation of two-dimensional materials

Xue-jun Zhang , Zhen-hua Yuan , Rui-xin Yang , Yi-lin He , Ying-lin Qin , Si Xiao , Jun He

Journal of Central South University ›› 2019, Vol. 26 ›› Issue (9) : 2295 -2306.

PDF
Journal of Central South University ›› 2019, Vol. 26 ›› Issue (9) : 2295 -2306. DOI: 10.1007/s11771-019-4174-8
Article

A review on spatial self-phase modulation of two-dimensional materials

Author information +
History +
PDF

Abstract

Self-diffraction appears when the strong laser goes through two-dimensional material suspension, and this spatial self-phase modulation (SPPM) phenomenon can be used to measure nonlinear optical parameters and achieve optical switch. At present, the mechanism of SPPM is still ambiguous. The debate mainly focuses on whether the phenomenon is caused by the nonlinear refractive index of the two-dimensional material or the thermal effect of the laser. The lack of theory limits the dimension of the phase modulation to the radius of the diffraction ring and the vertical imbalance. Therefore, it is urgent to establish a unified and universal SSPM theoretical system of two-dimensional material.

Keywords

nonlinear optics / spatial self-phase modulation / two-dimensional materials

Cite this article

Download citation ▾
Xue-jun Zhang, Zhen-hua Yuan, Rui-xin Yang, Yi-lin He, Ying-lin Qin, Si Xiao, Jun He. A review on spatial self-phase modulation of two-dimensional materials. Journal of Central South University, 2019, 26(9): 2295-2306 DOI:10.1007/s11771-019-4174-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MaimanT H. Stimulated optical radiation in ruby [J]. Nature, 1960, 187(4736): 493-494

[2]

TownesC H. Obituary: Theodore H. Maiman (1927-2007) [J]. Nature, 2007, 447(7145): 654

[3]

WangG, XiaoS, PengY-h, WangY-w, YuanC-l, HeJun. Two-photon and three-photon absorption in ZnO nanocrystals embedded in Al2O3 matrix influenced by defect states [J]. Optical Letter, 2019, 441179-182

[4]

Chinese Physics Letters, 2018, 35(6

[5]

GuoL-h, WangY-w, JiangY-q, XiaoS, HeJun. Dependence of nonlinear optical response of anatase TiO2 on shape and excitation intensity [J]. Chinese Physics Letters, 2017, 377): 266-270

[6]

Acta Physica Sinica, 2015, 64(17

[7]

OstroverkhovaO, MoernerW E. Organic photorefractives mechanisms, materials, and applications [J]. Chemical Reviews, 2004, 3539): 3267-3314

[8]

DavisA, McnamaraD E, CottrellD M, SoneharaT. Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator [J]. Applied Optics, 2000, 39(10): 1549-1554

[9]

OstrovskyS, RickenstorffC, ArrizonV. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator [J]. Optical Letter, 2013, 38(4): 534-536

[10]

RuizA M, LemmiC, MorenoL, CamposJ, YzuelM J. Anamorphic and spatial frequency dependent phase modulation on liquid crystal displays optimization of the modulation diffraction efficiency [J]. Optical Express, 2005, 13(6): 2111-2119

[11]

MorozovskaA N, KhistV V, GlinchukM D, ScherbakovC M, SilibinM V, KaroubskyD V, EliseevE A. Flexoelectricity induced spatially modulated phases in ferroics and liquid crystals [J]. Journal of Molecular Liquids, 2018, 267: 550-559

[12]

Applied Physics Letters, 2015, 106(19

[13]

Applied Physics Letters, 2017, 11116

[14]

ZHANG H, ZHOU H, LI J, QIAO Y J, SI J, GAO W. Compensation of phase nonlinearity of liquid crystal spatial light modulator for high-resolution wave front correction [J]. Journal of the European Optical Society: Rapid Publications, 2015, 10: 15036. DOI: https://doi.org/10.2971/jeos.2015.15036.

[15]

PanR-p, ChenS-m, PanC-ling. Self-bending and asymmetric spatial self-phase modulation [J]. Journal of the Optical Society of America B, 1991, 85): 1065-1071

[16]

NovoselovK S, GeimA K, MorozovS V, JiangD Z Y, DubonosS V, GrigorievaI V, FirsovA A. Electric field effect in atomically thin carbon films [J]. Science, 2004666669

[17]

ZhuY-w, WangP, XiaoS, HeS, ChenJ-z, JiangY-l, WangY-d, HeJ, GaoY-li. Manipulating three-dimensional bending to extraordinarily stiffen two-dimensional membranes by interference colors [J]. Nanoscale, 2018, 10(46): 21782-21789

[18]

Journal of Physics D-Applied Physics, 2016, 49(31

[19]

XiaF-n, WangH, XiaoD, DubeyM, RamasubramaniamA. Two-dimensional material nanophotonics [J]. Nature Photonics, 2014, 812): 899-907

[20]

CaoM-l, ZhangH-x, ZhangCong. Effect of graphene on mechanical properties of cement mortars [J]. Journal of Central South University, 2016, 23(4): 919-925

[21]

WuZ-t, HuF-y, ZhangY, GaoQ, ChenZ-ping. Mechanical analysis of double-layered circular graphene sheets as building material embedded in an elastic medium [J]. Journal of Central South University, 2017, 24(11): 2717-2724

[22]

WangY-w, LiuS, ZengB-w, HuangH, XiaoJ, LiJ-b, LongM-q, XiaoS, YuX-f, GaoY-l, HeJun. Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots [J]. Nanoscale, 2017, 9(14): 4683-4690

[23]

Applied Physics Letters, 2016, 108(22

[24]

Applied Physics Letters, 2015, 1079

[25]

MuH-r, WangZ-t, YuanJ, XiaoS, ChenC-y, ChenY, ChenY, SongJ-c, WangY-s, XueY-z, ZhangH, BaoQ-liang. Graphene–Bi2Te3 heterostructure as saturable absorber for short pulse generation [J]. ACS Photonics, 2015, 27): 832-841

[26]

Acta Physica Sinica, 2015, 64(3

[27]

Acta Physica Sinica, 2014, 6314

[28]

TerushigeH, HmyoshiT, TsutomuH. Asymmetry analysis of two-dimensional optical phase-modulation characteristics of a microchannel spatial light modulator (MSLM) [J]. Electronics and Communications in Japan, 1993, 768): 158-163

[29]

LahavO, GurgovH, SidorenkoP, PelegO, LeviL, FleischerA, CohenO. Self-phase modulation spectral broadening in two-dimensional spatial solitons toward three-dimensional spatiotemporal pulse-train solitons [J]. Optical Letter, 2012, 37(24): 5196-5198

[30]

ZhaoL, WangT, YelinS F. Two-dimensional all-optical spatial light modulation with high speed in coherent media [J]. Optical Letter, 2009, 34(13): 1930-1932

[31]

WuR, ZhangY-l, YanS-c, BianF, WangW-l, BaiX-d, LuX-h, ZhaoJ-m, WangE-ge. Purely coherent nonlinear optical response in solution dispersions of graphene sheets [J]. Nano Lett, 2011, 11(12): 5159-5164

[32]

Applied Physics Letters, 2015, 107(15

[33]

XiaoS, LvB-s, WuL, ZhuM-l, HeJ, TaoS-hua. Dynamic self-diffraction in MoS2 nanoflake solutions [J]. Optical Express, 2015, 235): 5875-5887

[34]

ZhangJ-d, YuX-f, HanW-j, LvB-s, LiX-h, XiaoS, GaoY-l, HeJun. Broadband spatial self-phase modulation of black phosphorous [J]. Optical Letter, 2016, 41(8): 1704-1707

[35]

LiX-h, HuK-h, LvB-s, ZhangJ-d, WangY-w, WangP, XiaoS, GaoY-l, HeJun. Enhanced nonlinear optical response of rectangular MoS2 and MoS2/TiO2 in dispersion and film [J]. The Journal of Physical Chemistry C, 2016, 120(32): 18243-18248

[36]

LiX-h, LiuR-k, XieH-h, ZhangY, LvB-s, WangP, WangJ-h, FanQ, MaY, TaoS-h, XiaoS, YuX-f, GaoY-l, HeJun. Tri-phase all-optical switching and broadband nonlinear optical response in Bi2Se3 nanosheets [J]. Optical Express, 2017, 25(15): 18346-18354

[37]

JiangY-q, MaY, FanZ-y, WangP, LiX-h, WangY-w, ZhangY, ShenJ-q, WangG, YangZ-J, XiaoS, GaoY-l, HeJun. Abnormal nonlinear optical properties of hybrid graphene-TiO2 nanostructures [J]. Optical Letter, 2018, 43(3): 523-526

[38]

WangG-z, HigginsS, WangK-p, BennettD, MilosavljevicN, MaganJ J, ZhangS-f, ZhangX-y, WangJ, BlauW J. Intensity-dependent nonlinear refraction of antimonene dispersions in the visible and near-infrared region [J]. Applied Optics, 2018, 57(22): E147-E153

[39]

ShanY-x, WuL-m, LiaoY-l, TangJ, DaiX-y, XiangY-jiang. Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials [J]. Nanoscale, 2017, 9(10): 3547-3554

[40]

ShanY-x, TangJ, WuL-m, LuS-b, DaiX-y, XiangY-jiang. Spatial self-phase modulation and all-optical switching of graphene oxide dispersions [J]. Journal of Alloys and Compounds, 2019, 771: 900-904

[41]

KarmakarS, BiswasS, KumbhakarP. Low power continuous-wave nonlinear optical effects in MoS2 nanosheets synthesized by simple bath ultrasonication [J]. Optical Materials, 2017585594

[42]

SadrolhosseiniA R, SurayaA R, HamidS, NoorA S M, NezakatiH. Spatial self-phase modulation patterns in graphene oxide and graphene oxide with silver and gold nanoparticles [J]. Optical and Quantum Electronics, 2016, 48(4): 222

[43]

AIP Advances, 2019, 92

[44]

ShanY-x, WuL-m, LiaoY-l, TangJ, DaiX-y, XiangY-jiang. A promising nonlinear optical material and its applications for all-optical switching and information converters based on the spatial self-phase modulation (SSPM) effect of TaSe2 nanosheets [J]. Journal of Materials Chemistry C, 2019, 7133811-3816

[45]

Advanced Functional Materials, 2019, 29(4

[46]

Advanced Materials, 2019, 3114

[47]

JiaY, LiZ-f, SaeedM, TangJ, CaiH-z, XiangY-jiang. Kerr nonlinearity in germanium selenide nanoflakes measured by Z-scan and spatial self-phase modulation techniques and its applications in all-optical information conversion [J]. Optical Express, 2019, 2715): 20857-20873

[48]

JiaY, LiaoY-l, WuL-m, ShanY-x, DaiX-y, CaiH-z, XiangY-j, FanD-yuan. Nonlinear optical response, all optical switching, and all optical information conversion in NbSe2 nanosheets based on spatial self-phase modulation [J]. Nanoscale, 2019, 11(10): 4515-4522

[49]

Laser & Photonics Reviews, 2018, 12(12

[50]

Advanced Optical Materials, 2018, 619

[51]

Acta Physica Sinica, 2018, 673

[52]

SunT-j, QianX, ShangY-x, LiuJ, WangK-y, JiYang. Coherent rainbows from solids [J]. Science Bulletin, 2018, 639): 531-534

[53]

Acta Phys Sin, 2018, 67(18

[54]

AbeywickremaU, BanerjeeP P, BanerjeeN T. Holographic assessment of self-phase modulation and blooming in a thermal medium [J]. Applied Optics, 2015, 5410): 2857-2865

[55]

WuY-l, WuQ, SunF, ChengC, MengS, ZhaoJ-min. Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(38): 11800-11805

[56]

WangW-h, WuY-l, WuQ, HuaJ-j, ZhaoJ-min. Coherent nonlinear optical response spatial self-phase modulation in MoSe2 nano-sheets [J]. Scientific reports, 2016

[57]

ZhangQ, ChengX-m, ZhangY, YinX-l, JiangM, ChenH-w, BaiJ-tao. Optical limiting using spatial self-phase modulation in hot atomic sample [J]. Optics & Laser Technology, 2017, 88: 54-60

[58]

Applied Physics Letters, 2016, 108(24

[59]

Applied Physics Letters, 2014, 10414

[60]

JiaS, VaughanJ C, ZhuangX-wei. Isotropic 3D super-resolution imaging with a self-bending point spread function [J]. Nature Photonics, 2014, 8: 302-306

[61]

BalciunasT, Fourcade-, DutinC, FanG, WittingT, VoroninA A, ZheltikovA M, GeromeF, PaulusG G, BaltuskaA, BenabidF.. A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre [J]. Nature Communications, 2015, 6: 6117

[62]

JaureguiC, LimpertJ T, NnermannA. Highpower fibre lasers [J]. Nature Photonics, 2013, 711): 861-867

[63]

Physical Review B, 2013, 87(12

[64]

VellekoopI M, LagendijkA, MoskA P. Exploiting disorder for perfect focusing [J]. Nature Photonics, 2010, 45): 320-322

[65]

Phys Rev E Stat Nonlin Soft Matter Phys, 2013, 87(1

[66]

RazzariL, DuchesneD, FerreraM, MorandottiR, ChuS, LittleB E, MossD J. CMOS - compatible integrated optical hyper-parametric oscillator [J]. Nature Photonics, 2009, 41): 41-45

[67]

Advanced Optical Materials, 2017, 6(2

[68]

LiJ-b, XiaoS, LangS, HeM-d, KimN C, LuoY-f, LuoJ-h, ChenL-qun. Switching freely between superluminal and subluminal light propagation in a monolayer MoS2 nano-resonator [J]. Optical Express, 2017, 2512): 13567-13576

[69]

LiJ-b, XiaoS, LangS, HeM-d, KimN C, LuoY-f, LuoJ-h, ChenL-qun. Bistable four-wave mixing response in a semiconductor quantum dot coupled to a photonic crystal nanocavity [J]. Optical Express, 2017, 25(21): 25663-25673

[70]

YangZ-j, ZhaoQ, XiaoS, HeJun. Engineering two-wire optical antennas for near field enhancement [J]. Photonics and Nanostructures-Fundamentals and Applications, 2017, 2572-76

[71]

GuB, WenB, RuiG-h, XueY-x, HeJ, ZhanQ-w, CuiY-ping. Nonlinear polarization evolution of hybridly polarized vector beams through isotropic Kerr nonlinearities [J]. Optical Express, 2016, 24(22): 25867-25875

[72]

GuB, WenB, RuiG-h, ZhanQ-w, CuiY-ping. Varying polarization and spin angular momentum flux of radially polarized beams by anisotropic Kerr media [J]. Optical Letter, 2016, 41(7): 1566-1569

[73]

GuB, WenB, RuiG-h, CuiY-ping. Nonlinear polarization rotation of two types of vector beams through isotropic Kerr nonlinearities [J]. Journal of Physics: Conference Series, 2017867

[74]

Chinese Optics Letters, 2019, 176

AI Summary AI Mindmap
PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/