Entropy analysis of SWCNT & MWCNT flow induced by collecting beating of cilia with porous medium

Muhammad N Abrar , Muhammad Sagheer , Shafqat Hussian

Journal of Central South University ›› 2019, Vol. 26 ›› Issue (8) : 2109 -2118.

PDF
Journal of Central South University ›› 2019, Vol. 26 ›› Issue (8) : 2109 -2118. DOI: 10.1007/s11771-019-4158-8
Article

Entropy analysis of SWCNT & MWCNT flow induced by collecting beating of cilia with porous medium

Author information +
History +
PDF

Abstract

In this article, we considers the thermodynamics analysis of creeping viscous nanofluid flow in a horizontal ciliated tube under the effects of a uniform magnetic field and porous medium. Moreover, energy analysis is performed in the presence of an internal heat source and thermal radiation phenomena. The thermal conductivity of base fluid water is strengthened by considering the carbon nanotubes (CNTs). Mathematical formulation operated, results in a set of non-linear coupled partial differential equations. The governed differential system is transformed into an ordinary differential system by considering suitable similarity variables. Exact solutions in the closed form are computed for the temperature, momentum and pressure gradient profiles. In this study, special attention is devoted to the electrical conductivity of the CNTs. Streamlines patterns are also discussed to witness the flow lines for different parameters. Thermodynamics analysis shows that entropy of the current flow system is an increasing function of Brinkmann number, magnetic parameter, nanoparticle concentration parameter and Darcy number.

Keywords

single-wall carbon nanotubes (SWCNT) / multi-wall carbon nanotube (MWCNT) / thermodynamics analysis / magnetic field / Darcy effect / thermal radiation

Cite this article

Download citation ▾
Muhammad N Abrar, Muhammad Sagheer, Shafqat Hussian. Entropy analysis of SWCNT & MWCNT flow induced by collecting beating of cilia with porous medium. Journal of Central South University, 2019, 26(8): 2109-2118 DOI:10.1007/s11771-019-4158-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BejanA. A study of entropy generation in fundamental convective heat transfer [J]. J Heat Transfer, 1979, 101(4): 718-725

[2]

GorlaR S R, PrattD M. Second law analysis of a non-Newtonian laminar falling liquid film along an inclined heated plate [J]. Entropy, 2007, 9(1): 30-41

[3]

AksoyY. Effects of couple stresses on the heat transfer and entropy generation rates for a flow between parallel plates with constant heat flux [J]. Int J Therm Sci, 2016, 107: 1-12

[4]

SrinivasacharyaD, BinduK. Entropy generation in a micropolar fluid flow through an inclined channel [J]. Alexandria Eng J, 2016, 55(2): 973-982

[5]

HussainS, AhmedS E, AkbarT. Entropy generation analysis in MHD mixed convection of hybrid nanofluid in an open cavity with a horizontal channel containing an adiabatic obstacle [J]. Int J Heat Mass Transfer, 2017, 114: 1054-1066

[6]

KamranA, HussainS, SagheerM, AkmalN. A numerical study of magnetohydrodynamics flow in Casson nanofluid combined with Joule heating and slip boundary conditions [J]. Results in Physics, 2017, 7: 3037-3048

[7]

AbrarM N, Rizwan, UlHAQ, AwaisM, RashidI. Entropy analysis in a cilia transport of nanofluid under the influence of magnetic field [J]. Nuc Eng Technol, 2017, 49(8): 1680-1688

[8]

AbrarM N, SagheerM, HuassainS. Entropy formation analysis for the peristaltic motion of ferrofluids in the presence of Joule heating and fluid friction phenomena in a plumb duct [J]. J Nanofluids, 2019, 8: 1305-1313

[9]

SiddiqaS, AbrarM N, HossainM A, GorlaR S R. Double diffusive natural convection flow over a wavy surface situated in a non-absorbing medium [J]. Int J Heat and Mass Transfer, 2017, 109: 200-208

[10]

ChoiS U S. Enhancing thermal conductivity of fluids with nanoparticle [C]. Developments and Applications of Non-Newtonian Flows. ASME FED, 1995, 231: 99-105

[11]

DobsonJ. Magnetic nanoparticles for drug delivery [J]. Drug Dev Res, 2006, 67: 55-60

[12]

HadjipanayisC G, MachaidzeR, KaluzovaM, WangL, SchuetteA J, ChenH, WuX, MaoH. EGFRvIII antibody conjugated iron oxide nanoparticles for magnetic resonance imaging guided convection-enhanced delivery and targeted therapy of glioblastoma [J]. Cancer Res, 2010, 70(15): 6303-6312

[13]

GirginovaP I, Daniel-De-SilvaA L, LopesC B, FigueiraP, OteroM, AmaralV S, PereiraE, TrindadeT. Silica coated magnetite particles for magnetic removal of Hg+2 from water [J]. J Colloid Interface Sci, 2010, 345(2): 234-240

[14]

KhanW A, KhanZ H. Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary [J]. Appl Nanosci, 2014, 4(5): 633-641

[15]

AlyE H. Existence of the multiple exact solutions for nanofluids flow over a stretching/shrinking sheet embedded in a porous medium at the presence of magnetic field with electrical conductivity and thermal radiation effects [J]. Powder Technol, 2016, 301: 760-781

[16]

AhmedS B, ZhaoY, FangC, SuJ. Transport of a simple liquid through carbon nanotubes: Role of nanotube size [J]. Phys Lett A, 2017, 381(40): 3487-3492

[17]

AkbarN S, KhanZ H. Variable fluid properties analysis with water based CNT nanofluid over a sensor sheet: Numerical solution [J]. J Mol Liq, 2017, 232: 471-477

[18]

AbrarM N, SagheerM, HuassainS. Entropy analysis of Hall current and thermal radiation influenced by cilia with single and multi wall carbon nanotubes [J]. Bull Mater Sci, 2019, 42: 250

[19]

ShahZ, BonyahE, IslamS, GulT. Impact of thermal radiation on electrical MHD rotating flow of carbon nanotubes over a stretching sheet [J]. AIP Ad, 2019, 9015115

[20]

ShahZ, DawarA, IslamS, KhanI, LingD, ChingC. Darcy-Forchheimer flow of radiative carbon nanotubes with microstructure and inertial characteristics in the rotating frame [J]. Case Studies in Thermal Engineering, 2018, 12823-832

[21]

NasirS, ShahZ, IslamS, KhanW, KhanS N. Radiative flow of magneto hydrodynamics single-walled J. Cent. South Univ., 2019, 26: 2109-2118

[22]

NasirS, ShahZ, IslamS, BonyahE, GulT. Darcy Forchheimer nanofluid thin film flow of SWCNTs and heat transfer analysis over an unsteady stretching sheet [J]. AIP ADV, 2019, 9: 015223

[23]

ShahZ, DawarA, KumamP, KhanW, IslamS. Impact of nonlinear thermal radiation on MHD nanofluid thin film flow over a horizontally rotating disk [J]. Appl Sci, 2019, 9(8): 1533

[24]

ShahZ, IslamS, AyazH, KhanS. Radiative heat and mass transfer analysis of micropolar nanofluid flow of Casson fluid between two rotating parallel plates with effects of Hall current [J]. J Heat Transfer, 2018, 1412022401

[25]

SheikholeslamiM, ShahZ, ShafeeA, KhanI, TliliI. Uniform magnetic force impact on water based nanofluid thermal behavior in a porous enclosure with ellipse shaped obstacle [J]. Sci Rep, 2019, 91196

[26]

SheikholeslamiM, ShahZ, TassaddiqA, ShafeeA, KhanI. Application of electric field for augmentation of ferrofluid heat transfer in an enclosure including double moving walls [J]. IEEE ACESS, 2019, 721048-21056

[27]

ShahZ, IslamS, GulT, BonyahE, KhanM A. The electrical MHD and Hall current impact on micropolar nanofluid flow between rotating parallel plates [J]. Results in physics, 2018, 91201-1214

[28]

NieldD, BejanAConvection in porous media [M], 20063rd edNew York, Springer

[29]

RausA L, PatmoreJ, KurzepaL, BulmerJ, KoziolK. Electrical properties of carbon nanotube based fibers and their future use in electrical wiring [J]. Adv Funct Mater, 2014, 24: 3661-3682

AI Summary AI Mindmap
PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/