Nested Newmark model to estimate permanent displacement of seismic slopes with tensile strength cut-off

Zheng Zhou , Fei Zhang , Yu-feng Gao , Shuang Shu

Journal of Central South University ›› 2019, Vol. 26 ›› Issue (7) : 1830 -1839.

PDF
Journal of Central South University ›› 2019, Vol. 26 ›› Issue (7) : 1830 -1839. DOI: 10.1007/s11771-019-4137-0
Article

Nested Newmark model to estimate permanent displacement of seismic slopes with tensile strength cut-off

Author information +
History +
PDF

Abstract

Nested Newmark model(NNM) is a conceptual framework to assessing post-earthquake movements including dispersed shear movements. The original NNM omits that the tensile stresses would be encountered in slopes induced by earthquakes. The purpose of this study is to introduce the tensile strength cut-off and the relevant failure mechanism into NNM and conduct the limit analysis to determine the seismic displacement. Parametric studies are carried out to further investigate the influence of the tensile strength and input ground motions on permanent displacement. Neglecting the tensile strength can underestimate the permanent displacements of slopes. As the peak acceleration increases, the underestimation becomes more significant. With the reduction of tensile strength, much larger deformation occurs next to the slope crest. Although the present results are limited to an example, the method is of value in practice to predict the post-earthquake profile of slope.

Keywords

slopes / limit analysis / earthquakes / permanent displacement / Newmark / tensile strength

Cite this article

Download citation ▾
Zheng Zhou, Fei Zhang, Yu-feng Gao, Shuang Shu. Nested Newmark model to estimate permanent displacement of seismic slopes with tensile strength cut-off. Journal of Central South University, 2019, 26(7): 1830-1839 DOI:10.1007/s11771-019-4137-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

TERZAGHI K. Mechanisms of landslides [M]// Engineering Geology (Berkey) Volume. Geological Society of America, 1950.

[2]

SarmaS K, BhaveM V. Critical acceleration versus static factor of safety in stability analysis of earth dams and embankments [J]. Geotechnique, 1974, 24(4): 661-665

[3]

NewmarkN M. Effects of Earthquakes on dams and embankments [J]. Géotechnique, 1965, 15(2): 139-160

[4]

SarmaS K. Seismic stability of earth dams and embankments [J]. Géotechnique, 1975, 25(4): 743-761

[5]

SeedH B, IdrissI M, LeeK L, MakdisiF L. Dynamic analysis of the slide in the lower san fernando dam during the earthquake of February 9, 1971 [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1975, 101(9): 889-911

[6]

LEE K L. Seismic permanent deformations in earth dams, Report No. UCLA-ENG-7497 [R]. School of Engineering and Applied Science, University of California at Los Angeles, 1974.

[7]

SerffN, SeedH B, MakdisiF I, ChangC YEarthquake-induced deformations of earth dams. Report EERC 76-4 [R], 1976, Berkeley, Earthquake Engineering Research Center, University of California

[8]

ChughA K, StarkT D. Permanent seismic deformation analysis of a landslide [J]. Landslides, 2006, 3(1): 2-12

[9]

SeedH B, GoodmanR E. Earthquake stability of slopes of cohesionless soils [J]. Journal of Soil Mechanics & Foundations Div, 1964, 90(5): 43-68

[10]

WartmanJ, SeedR B, BrayJ D. Shaking table modeling of seismically induced deformations in slopes [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(5): 610-622

[11]

KutterB L, JamesR G. Dynamic centrifuge model tests on clay embankments [J]. Géotechnique, 1989, 39(1): 91-106

[12]

LingH I, LeshchinskyD. Seismic performance of simple slopes [J]. Soils and Foundations, 1995, 35(2): 85-94

[13]

YouL, MichalowskiR L. Displacement charts for slopes subjected to seismic loads [J]. Computers and Geotechnics, 1999, 25(1): 45-55

[14]

LeshchinskyB. Nested Newmark model to calculate the post-earthquake profile of slopes [J]. Engineering Geology, 2018, 233(1): 139-145

[15]

YangX L, HuangF. Slope stability analysis considering joined influences of nonlinearity and dilation [J]. Journal of Central South University of Technology, 2009, 16(2): 292-296

[16]

ZhangD B, JiangY, YangX L. Estimation of 3D active earth pressure under nonlinear strength condition [J]. Geomechanics and Engineering, 2019, 17(6): 515-525

[17]

UtiliS, AbdA H. On the stability of fissured slopes subject to seismic action [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(5): 785-806

[18]

MichalowskiR L. Stability of intact slopes with tensile strength cut-off [J]. Géotechnique, 2017, 67(8): 720-727

[19]

DruckerD C, PragerW. Soil mechanics and plastic analysis or limit design [J]. Quarterly of Applied Mathematics, 1952, 10(2): 157-165

[20]

BakerR, GarberM. Theoretical analysis of the stability of slopes [J]. Géotechnique, 1978, 28(4): 395-411

[21]

LeshchinskyD, BakerR, SilverM L. Three dimensional analysis of slope stability [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1985, 9(3): 199-223

[22]

HuangC, WuS H, WuH J. Seismic displacement criterion for soil retaining walls based on soil strength mobilization [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(1): 74-83

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/