PDF
Abstract
Vegetation encroachment occurred in bauxite residue disposal area (BRDA) following natural weathering processes, whilst the typical indicators of soil formation are still uncertain. Residue samples were collected from the BRDA in Central China, and related physical, chemical and biological indicators of bauxite residue with different storage years were determined. The indicators of soil formation in bauxite residue were selected using principal component analysis, factor analysis, and comprehensive evaluation to establish soil quality diagnostic index model on disposal areas. Following natural weathering processes, the texture of bauxite residue changed from silty loam to sandy loam. The pH and EC decreased, whilst porosity, nutrient element content and microbial biomass increased. The identified minimum data set (MDS) included available phosphorus (AP), moisture content (MC), C/N, sand content, total nitrogen (TN), microbial biomass carbon (MBC), and pH. The soil quality index of bauxite residue increased, and the relative soil quality index decreased from 1.89 to 0.15, which indicated that natural weathering had a significant effect on improveing the quality of bauxite residue and forming a new soil-like matrix. The diagnostic model of bauxite residue was established to provide data support for the regeneration on disposal area.
Keywords
bauxite residue disposal area
/
soil properties
/
minimum data set
/
diagnostic indices
/
natural weathering
/
soil formation in bauxite residue
Cite this article
Download citation ▾
Ying Guo, Feng Zhu, Chuan Wu, Tao Tian, J. Haynes Richard, Sheng-guo Xue.
Dynamic change and diagnosis of physical, chemical and biological properties in bauxite residue disposal areas.
Journal of Central South University, 2019, 26(2): 410-421 DOI:10.1007/s11771-019-4013-y
| [1] |
XueS, ZhuF, KongX, WuC, HuangL, HuangN, HartleyW. A review of the characterization and revegetation of bauxite residues (red mud) [J]. Environmental Science and Pollution Research, 2016, 23(2): 1120-1132
|
| [2] |
SantiniT C, FeyM V. Spontaneous vegetation encroachment upon bauxite residue (red mud) as an indicator and facilitator of in situ remediation processes [J]. Environmental Science and Technology, 2013, 47(21): 12089-12096
|
| [3] |
ValleS R, CarrascoJ. Soil quality indicator selection in chilean volcanic soils formed under temperate and humid conditions [J]. Catena, 2018, 162: 386-395
|
| [4] |
ZhuF, XueS, HartleyW, HuangL, WuC, LiXiao. Novel predictors of soil genesis following natural weathering processes of bauxite residues [J]. Environmental Science and Pollution Research, 2016, 23(3): 2856-2863
|
| [5] |
KirwanL J, HartshornA, McmonagleJ B, FlemingL, FunnellD. Chemistry of bauxite residue neutralisation and aspects to implementation [J]. International Journal of Mineral Processing, 2013, 119: 40-50
|
| [6] |
XueS, KongX, ZhuF, HartleyW, LiX, LiYi. Proposal for management and alkalinity transformation of bauxite residue in China [J]. Environmental Science and Pollution Research, 2016, 23(13): 12822-34
|
| [7] |
CourtneyR, HarrisJ A, PawlettM. Microbial community composition in a rehabilitated bauxite residue disposal area: A case study for improving microbial community composition [J]. Restoration Ecology, 2014, 22(6): 798-805
|
| [8] |
LiY, JiangJ, XueS, MillarG, KongX-f, LiX, LiM, LiChu. Effect of ammonium chloride on leaching behavior of alkaline anion and sodium ion in bauxite residue [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(10): 2125-2134
|
| [9] |
CourtneyR, MullenG. Use of germination and seedling performance bioassays for assessing revegetation strategies on bauxite residue [J]. Water, Air and Soil Pollution, 2009, 197(1–4): 15-22
|
| [10] |
KongX, LiM, XueS, HartleyW, ChenC, WuC, LiX, LiYi. Acid transformation of bauxite residue: Conversion of its alkaline characteristics [J]. Journal of Hazardous Materials, 2017, 324: 382-390
|
| [11] |
XueS, WuY, LiY, KongX, ZhuF, HartleyW, LiX, YeYu. Industrial wastes applications for alkalinity regulation in bauxite residue: A comprehensive review [J]. Journal of Central South University, 2019, 26(2): 268-288
|
| [12] |
XueS, LiM, JiangJ G J M, LiC, KongXiang. Phosphogypsum stabilization of bauxite residue: Conversion of its alkaline characteristics [J]. Journal of Environmental Sciences, 2019, 77: 1-10
|
| [13] |
ZhangG, BaiJ, XiM, ZhaoQ, LuQ, JiaJia. Soil quality assessment of coastal wetlands in the yellow river delta of China based on the minimum data set [J]. Ecological Indicators, 2016, 66: 458-466
|
| [14] |
YaoR, YangJ, GaoP, ZhangJ, JinWen. Determining minimum data set for soil quality assessment of typical salt-affected farmland in the coastal reclamation area [J]. Soil and Tillage Research, 2013, 128: 137-148
|
| [15] |
SantiniT C, KerrJ L, WarrenL A. Microbially-driven strategies for bioremediation of bauxite residue [J]. Journal of Hazardous Materials, 2015, 293: 131-157
|
| [16] |
EzeP N, KnightJ, EvansM. Tracing recent environmental changes and pedogenesis using geochemistry and micromorphology of alluvial soils, sabie-sand river basin, south Africa [J]. Geomorphology, 2016, 268: 312-321
|
| [17] |
ZuberS M, BehnkeG D, NafzigerE D, VillamilM B. Multivariate assessment of soil quality indicators for crop rotation and tillage in Illinois [J]. Soil and Tillage Research, 2017, 174: 147-155
|
| [18] |
BabuA G, ReddyM S. Influence of arbuscular mycorrhizal fungi on the growth and nutrient status of bermudagrass grown in alkaline bauxite processing residue [J]. Environmental Pollution, 2011, 159(1): 25-29
|
| [19] |
XenidisA, HarokopouA D, MylonaE, BrofasG. Modifying alumina red mud to support a revegetation cover [J]. JOM, 2005, 57(2): 42-46
|
| [20] |
EasthamJ, MoraldT. Effective nutrient sources for plant growth on bauxite residue: II. Evaluating the response to inorganic fertilizers [J]. Water, Air and Soil Pollution, 2006, 171(1–4): 315-331
|
| [21] |
LiaoJ, JiangJ, XueS, ChengQ, WuH, ManikandanR, WilliamH, HuangLong. A novel acid-producing fungus isolated from bauxite residue: The potential to reduce the alkalinity [J]. Geomicrobiology Journal, 2018, 35(10): 840-847
|
| [22] |
CourtneyR, HarringtonT. Growth and nutrition of holcus lanatus in bauxite residue amended with combinations of spent mushroom compost and gypsum [J]. Land Degradation and Development, 2012, 23(2): 144-149
|
| [23] |
KrishnaP, ReddyM S, PatnaikS K. Aspergillus tubingensis reduces the pH of the bauxite residue (red mud) amended soils [J]. Water, Air and Soil Pollution, 2005, 167(1–4): 201-209
|
| [24] |
VermeireM L, CornuS, FekiacovaZ, DetienneM, DelvauxB, CornélisJ T. Rare earth elements dynamics along pedogenesis in a chronosequence of podzolic soils [J]. Chemical Geology, 2016, 446: 163-174
|
| [25] |
TsaiH, HseuZ, KuoH, HuangW, ChenZueng. Soilscape of west-central taiwan: its pedogenesis and geomorphic implications [J]. Geomorphology, 2016, 255: 81-94
|
| [26] |
LiuJ, WuL, ChenD, YuZ, WeiChang. Development of a soil quality index for camellia oleifera forestland yield under three different parent materials in southern china [J]. Soil and Tillage Research, 2018, 176: 45-50
|
| [27] |
RezaeiS A, GilkesR J, AndrewsS S. A minimum data set for assessing soil quality in rangelands [J]. Geoderma, 2006, 136(12): 229-234
|
| [28] |
ZhuF, ChengQ, XueS, LiC, HartleyW, WuChuan, TianTao. Influence of natural regeneration on fractal features of residue microaggregates in bauxite residue disposal areas [J]. Land Degradation and Development, 2018, 29(1): 138-149
|
| [29] |
XueS, YeY, ZhuF, WangQ, JiangJ, HartleyW. Changes in distribution and microstructure of bauxite residue aggregates following amendments addition [J]. Journal of Environmental Sciences, 2019, 78: 276-286
|
| [30] |
PellegriniS, GarcíaG, PeñasC, JoseM, VignozziN, CostantiniE A C. Pedogenesis in mine tails affects macroporosity, hydrological properties, and pollutant flow [J]. Catena, 2016, 136: 3-16
|
| [31] |
ZhuF, HouJ, XueS, WuC, WangQ, HartleyW. Vermicompost and gypsum amendments improve aggregate formation in bauxite residue [J]. Land Degradation and Development, 2017, 28(7): 2109-2120
|
| [32] |
ZhuF, ZhouJ, XueS, WilliamH, WuC, GuoYing. Aging of bauxite residue in association of regeneration: A comparison of methods to determine aggregate stability and erosion resistance [J]. Ecological Engineering, 2016, 92: 47-54
|
| [33] |
ZhuF, LiaoJ, XueS, HartleyW, ZouQ, WuHao. Evaluation of aggregate microstructures following natural regeneration in bauxite residue as characterized by synchrotron-based X-ray micro-computed tomography [J]. Science of the Total Environment, 2016, 573: 155-163
|
| [34] |
KongX, JiangX, XueS, HuangL, HartleyW, WuC, LiXiao. Migration and distribution of saline ions in bauxite residue during water leaching [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(3): 534-541
|
| [35] |
ShuklaM K, LalR, EbingerM. Soil quality indicators for reclaimed mine soils in southeastern ohio [J]. Soil Science, 2004, 169(2): 133-142
|
| [36] |
ChenJ, XiaoG, KuzyakovY, JeneretteG D, MaY, LiuW, WangZ, ShenWei. Soil nitrogen transformation responses to seasonal precipitation changes are regulated by changes in functional microbial abundance in a subtropical forest [J]. Biogeosciences, 2017, 9(14): 2513-2525
|
| [37] |
JohannesA, MatterA, SchulinR, WeisskopfP, BaveyeP C, BoivinP. Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter? [J]. Geoderma, 2017, 302: 14-21
|
| [38] |
ZhengFen. Effect of vegetation changes on soil erosion on the loess plateau [J]. Pedosphere, 2006, 16(4): 420-427
|
| [39] |
LenoirL, PerssonT, BengtssonJ, WallanderH, WirénD. Bottom–up or top–down control in forest soil microcosms? Effects of soil fauna on fungal biomass and C/N mineralization [J]. Biology and Fertility of Soils, 2007, 43(3): 281-294
|
| [40] |
NabiollahiK, GolmohamadiF, TaghizadehM R, KerryR, DavariM. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate [J]. Geoderma, 2018, 318: 16-28
|
| [41] |
XuE, ZhangHong. Spatially-explicit sensitivity analysis for land suitability evaluation [J]. Applied Geography, 2013, 45: 1-9
|
| [42] |
RaiesiF. A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions [J]. Ecological Indicators, 2017, 75: 307-320
|