Pseudo-static analysis of cantilever retaining walls using upper bound limit analysis approach

Asadollah Ranjbar Karkanaki , Navid Ganjian , Farajollah Askari

Journal of Central South University ›› 2019, Vol. 26 ›› Issue (1) : 241 -255.

PDF
Journal of Central South University ›› 2019, Vol. 26 ›› Issue (1) : 241 -255. DOI: 10.1007/s11771-019-3997-7
Article

Pseudo-static analysis of cantilever retaining walls using upper bound limit analysis approach

Author information +
History +
PDF

Abstract

Given the extensive utilization of cantilever retaining walls in construction and development projects, their optimal design and analysis with proper attention to seismic loads is a typical engineering problem. This research presents a new algorithm for pseudo-static analysis of retaining walls employing upper bound method. The algorithm can be utilized to design and check the external and internal stability of the wall based on the proposed mechanism. One of the main features of this algorithm is its ability to determine the critical condition of failure wedges, the minimum safety factor and maximum force acting on the wall, as well as the minimum weight of the wall, simultaneously, by effectively using the multi-objective optimization. The results obtained by the proposed failure mechanisms show that, while using the upper bound limit analysis approach, the active force should be maximized concurrent with optimizing the direction of the plane passing through the back of the heel. The present study also applies the proposed algorithm to determine the critical direction of the earthquake acceleration coefficient. The critical direction of earthquake acceleration coefficient is defined as the direction that maximizes the active force exerted on the wall and minimizes the safety factor for wall stability. The results obtained in this study are in good agreement with those of similar studies carried out based on the limit equilibrium method and finite element analysis. The critical failure mechanisms were determined via optimization with genetic algorithm.

Keywords

retaining wall / upper bound / pseudo-static analysis / safety factor / multi-objective optimization

Cite this article

Download citation ▾
Asadollah Ranjbar Karkanaki, Navid Ganjian, Farajollah Askari. Pseudo-static analysis of cantilever retaining walls using upper bound limit analysis approach. Journal of Central South University, 2019, 26(1): 241-255 DOI:10.1007/s11771-019-3997-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YepesV, AlcalaJ, PereaC, Gonzalez-VidosaF. A parametric study of optimum earth-retaining walls by simulated annealing [J]. Engineering Structures, 2008, 30(3): 821-830

[2]

CeranicB, FryerC, BainesR. An application of simulated annealing to the optimum design of reinforced concrete retaining structures [J]. Computers & Structures, 2001, 79(17): 1569-1581

[3]

SheikholeslamiR, KhaliliB G, SadollahA, KimJ H. Optimization of reinforced concrete retaining walls via hybrid firefly algorithm with upper bound strategy [J]. KSCE Journal of Civil Engineering, 2016, 20(6): 2428-2438

[4]

NamaS, SahaA K, GhoshS. Parameters optimization of geotechnical problem using different optimization algorithm [J]. Geotechnical and Geological Engineering., 2015, 33(5): 1235-1253

[5]

ZengX, SteedmanR S. Rotating block method for seismic displacement of gravity walls [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(8): 709

[6]

ChoudhuryD, AhmadS M. Stability of waterfront retaining wall subjected to pseudo–static earthquake forces [J]. Ocean Engineering, 2007, 34141947

[7]

AhmadS M, ChoudhuryD. Seismic rotational stability of waterfront retaining wall using pseudodynamic method [J]. International Journal of Geomechanics, 2010, 10145

[8]

BashaB M, BabuG L. Seismic rotational displacements of gravity walls by pseudodynamic method with curved rupture surface [J]. International Journal of Geomechanics, 2009, 10393

[9]

BashaB M, BabuG L. Optimum design of bridge abutments under seismic conditions: Reliability–based approach [J]. Journal of Bridge Engineering, 2010, 152183

[10]

SiddharthanR, AraS, NorrisG M. Simple rigid plastic model for seismic tilting of rigid walls [J]. Journal of Structural Engineering, 1992, 1182469

[11]

NouriH, FakherA, JonesC. Development of horizontal slice method for seismic stability analysis of reinforced slopes and walls [J]. Geotextiles and Geomembranes, 2006, 243175

[12]

PowrieW. Limit equilibrium analysis of embedded retaining walls [J]. Geotechnique, 1996, 464709

[13]

DiakoumiM, PowrieW. Mobilisable strength design for flexible embedded retaining walls [J]. Geotechnique, 2013, 63295

[14]

AlA L, SitarN. Seismic earth pressures on cantilever retaining structures [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136101324

[15]

AulbachB, ZieglerM, SchüttrumpfH. Design aid for the verification of resistance to failure by hydraulic heave [J]. Procedia Engineering, 2013, 57: 113

[16]

LiX–p, YongW, HeS–ming. Seismic stability analysis of gravity retaining walls [J]. Soil Dynamics and Earthquake Engineering, 2010, 3010875-878

[17]

DI SantoloA S, EvangelistaA. Dynamic active earth pressure on cantilever retaining walls [J]. Computers and Geotechnics, 2011, 38(8): 1041-1051

[18]

KloukinasP, Di SantoloA S, PennaA, DietzM, EvangelistaA, SimonelliA L. Investigation of seismic response of cantilever retaining walls: Limit analysis vs shaking table testing [J]. Soil Dynamics and Earthquake Engineering, 2015, 77432-445

[19]

ChengY. Seismic lateral earth pressure coefficients for c–f soils by slip line method [J]. Computers and Geotechnics, 2003, 30(8): 661-670

[20]

YangX L. Upper bound limit analysis of active earth pressure with different fracture surface and nonlinear yield criterion [J]. Theoretical and Applied Fracture Mechanics, 2007, 47(1): 46-56

[21]

EvangelistaA, Di SantoloA S, SimonelliA L. Evaluation of pseudostatic active earth pressure coefficient of cantilever retaining walls [J]. Soil Dynamics and Earthquake Engineering, 2010, 30(11): 1119-1128

[22]

ZhangJ M, SongF, LiD J. Effects of strain localization on seismic active earth pressures [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 136(7): 999-1003

[23]

IskanderM C Z, OmidvarM, GuzmanI. Rankine pseudo–static earth pressure for c–ø soils [J]. Mechanics Research Communications, 2013, 51: 51-55

[24]

ShamsabadiA, XuS Y, TacirogluE. A generalized log–spiral–Rankine limit equilibrium model for seismic earth pressure analysis [J]. Soil Dynamics and Earthquake Engineering, 2013, 49: 197-209

[25]

MononobeN. Consideration into earthquake vibrations and vibration theories [J]. Journal of the Japan Society of Civil Engineers, 1924, 10(5): 1063-1094

[26]

OkabeS. General theory of earthquake pressure and seismic stability of retaining wall and dams [J]. J Japanese Soc of Civil Engng., 1924, 10(6): 1277-1323

[27]

MONONOBE N, MATSUO H, EDITORS. On the determination of earth pressures during earthquakes [C]// Proceedings, World Engineering Congress. Tokyo, Japan, 1929: 176.

[28]

HillR. A theory of the yielding and plastic flow of anisotropic metals [C]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1948281297

[29]

ChenW F, LiuX. Limit analysis in soil mechanics [M]. Amsterdam: Elsevier, 2012

[30]

CoulombCEssay on maximums and minimums of rules to some static problems relating to architecture [DB], 1973

[31]

RankineWM. On the mathematical theory of the stability of earth–work and masonry [J]. Proceedings of the Royal Society of London, 1857, 8(1): 60-61

[32]

FinnW. Applications of plasticity in soil mechanics [J]. Journal of Soil Mechanics & Foundations Division, 1967, 93(5): 101-120

[33]

JamesR, BransbyP L. Experimental and theoretical investigations of a passive earth pressure problem [J]. Geotechnique, 1970, 20(1): 17-37

[34]

ChenW, RosenfarbJ. Limit analysis solutions of earth pressure problems [J]. Journal of the Japanese Society of Soil Mechanics and Foundation Engineering, 1973, 13(4): 45-60

[35]

RicharsR, HuangC, FishmanK L. Seismic earth pressure on retaining structures [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(9): 771-778

[36]

SherifM A, FangY S. Dynamic earth pressures on walls rotating about the top [J]. Journal of the Japanese Society of Soil Mechanics and Foundation Engineering, 1984, 24(4): 109-117

[37]

CaltabianoS, CasconeE, MaugeriM. Static and seismic limit equilibrium analysis of sliding retaining walls under different surcharge conditions [J]. Soil Dynamics and Earthquake Engineering, 2012, 37: 38-55

[38]

LiX, SuL, WuY, HeS. Seismic stability of gravity retaining walls under combined horizontal and vertical accelerations [J]. Geotechnical and Geological Engineering, 2015, 33(1): 161-166

[39]

ChangM, ChenW F. Lateral earth pressures on rigid retaining walls subjected to earthquake forces [M]. School of Civil Engineering, Purdue University, 1981

[40]

KarkanakiA R, GanjianN, AskariF. Stability analysis and design of cantilever retaining walls with regard to possible failure mechanisms: An upper bound limit analysis approach [J]. Geotechnical and Geological Engineering., 2017, 35(3): 1079-1092

[41]

MorgensternN, PriceV E. The analysis of the stability of general slip surfaces [J]. Geotechnique, 1965, 15(1): 79-93

[42]

BishopA W. The use of the slip circle in the stability analysis of slopes [J]. Geotechnique, 1955, 5(1): 7-17

[43]

ShuklaS K, GuptaS K, SivakuganN. Active earth pressure on retaining wall for c–ø soil backfill under seismic loading condition [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(5): 690-696

[44]

AashtoLLRFD bridge design specifications, 1998, American Association of State Highway and Transportation Officials, Washington, DC

[45]

InstituteA C. Building code requirements for structural concrete (ACI 318–05) and commentary (ACI 318R–05) [S]. American Concrete Inst, 2004

[46]

HousnerG WWiegelR L. Strong ground motion [C]. Earthquake Engineering, 1974, Prentice–Hall, NY, New York: 7591

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/