Texture features analysis on micro-structure of paste backfill based on image analysis technology
Sheng-hua Yin , Ya-jian Shao , Ai-xiang Wu , Yi-ming Wang , Zhi-yong Gao
Journal of Central South University ›› 2018, Vol. 25 ›› Issue (10) : 2360 -2372.
Texture features analysis on micro-structure of paste backfill based on image analysis technology
The strength of cement-based materials, such as mortar, concrete and cement paste backfill (CPB), depends on its microstructures (e.g. pore structure and arrangement of particles and skeleton). Numerous studies on the relationship between strength and pore structure (e.g., pore size and its distribution) were performed, but the micro-morphology characteristics have been rarely concerned. Texture describing the surface properties of the sample is a global feature, which is an effective way to quantify the micro-morphological properties. In statistical analysis, GLCM features and Tamura texture are the most representative methods for characterizing the texture features. The mechanical strength and section image of the backfill sample prepared from three different solid concentrations of paste were obtained by uniaxial compressive strength test and scanning electron microscope, respectively. The texture features of different SEM images were calculated based on image analysis technology, and then the correlation between these parameters and the strength was analyzed. It was proved that the method is effective in the quantitative analysis on the micro-morphology characteristics of CPB. There is a significant correlation between the texture features and the unconfined compressive strength, and the prediction of strength is feasible using texture parameters of the CPB microstructure.
microstructure / texture feature / Tamura texture / GLCM feature / unconfined compressive strength / quantitative analysis / cement paste backfill
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
ASTM. D2487-11 standard practice for classification of soils for engineering purposes (unified soil classification system) [S]. 2011. DOI: https://doi.org/www.astm.org/Standards/D2487.htm. |
| [31] |
ASTM. C143-90 standard test method for slump of hydraulic-cement concrete [S]. 2015. https://doi.org/www.astm.org/Standards/C143.htm. |
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
/
| 〈 |
|
〉 |