Upper bound analysis of ultimate pullout capacity of shallow 3-D circular plate anchors based on nonlinear Mohr-Coulomb failure criterion

Lian-heng Zhao , Yi-gao Tan , Shi-hong Hu , Dong-ping Deng , Xin-ping Yang

Journal of Central South University ›› 2018, Vol. 25 ›› Issue (9) : 2272 -2288.

PDF
Journal of Central South University ›› 2018, Vol. 25 ›› Issue (9) : 2272 -2288. DOI: 10.1007/s11771-018-3912-7
Article

Upper bound analysis of ultimate pullout capacity of shallow 3-D circular plate anchors based on nonlinear Mohr-Coulomb failure criterion

Author information +
History +
PDF

Abstract

Based on the nonlinear Mohr-Coulomb failure criterion and the associated flow rules, the three-dimensional (3-D) axisymmetric failure mechanism of shallow horizontal circular plate anchors that are subjected to the ultimate pullout capacity (UPC) is determined. A derivative function of the projection function for projecting the 3-D axisymmetric failure surface on plane is deduced using the variation theory. By using difference principle, the primitive function of failure surface satisfying boundary condition and numerical solution to its corresponding ultimate pullout capacity function are obtained. The influences of nonlinear Mohr-Coulomb parameters on UPC and failure mechanism are studied. The result shows that UPC decreases with dimensionless parameter m and uniaxial tensile strength increases but increases when depth and radius of plate anchor, surface overload, initial cohesion, geomaterial density and friction angle increase. The failure surface is similar to a symmetrical spatial funnel, and its shape is mainly determined by dimensionless parameter m; the surface damage range expands with the increase of radius and depth of the plate anchor as well as initial cohesion but decreases with the increase of dimensionless parameter m and uniaxial tensile strength as well as geomaterial density. As the dimensionless parameter m=2.0, the numerical solution of UPC based on the difference principle is proved to be feasible and effective through the comparison with the exact solution. In addition, the comparison between solutions of UPC computed by variation method and those computed by upper bound method indicate that variation method outperforms upper bound method.

Keywords

shallow circular plate anchors / ultimate pullout capacity / variation analysis / nonlinear Mohr-Coulomb failure criterion / upper bound limit analysis

Cite this article

Download citation ▾
Lian-heng Zhao, Yi-gao Tan, Shi-hong Hu, Dong-ping Deng, Xin-ping Yang. Upper bound analysis of ultimate pullout capacity of shallow 3-D circular plate anchors based on nonlinear Mohr-Coulomb failure criterion. Journal of Central South University, 2018, 25(9): 2272-2288 DOI:10.1007/s11771-018-3912-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MeyerhofG G, AdamsJ I. Ultimate uplift capacity of foundation [J]. Canadian Geotechnical Journal, 1968, 5(4): 225-244

[2]

DasB M. Model tests for uplift capacity of foundations in clay [J]. Geomaterials and Foundations, 1978, 18(2): 17-24

[3]

MurrayE J, GeddesJ D. Uplift of plate anchors in sand [J]. Journal of Geotechnical Engineering, ASCE, 1987, 113(3): 202-215

[4]

QianP Y, LiuZ D. Distortion and failure character of shallow buried inclined anchors [J]. Chinese Journal of Geotechnical Engineering, 1992, 14(1): 62-66

[5]

HeS M. Study on bearing capacity of uplift anchor foundation [J]. Underground Space, 2002, 22(2): 145-148

[6]

IlamparuthiK, DickinE A, MuthukrishnaiahK. Experimental investigation of the uplift capacity of circular plate anchors in sand [J]. Canadian Geotechnical Journal, 2002, 39(3): 648-664

[7]

ChuX F, LiZ G, WangR, ZhuC Q. The test research of anchor‘s uplift behavior in calcareous sand [J]. Rock and Soil mechanics, 2002, 23(3): 368-371

[8]

ZhuC Q, ChuX F. Calcareous sand in the limits of plate anchor uplift force calculation [J]. Rock and Soil Mechanics, 2003, 24: 153-158

[9]

DingP M, XiaoZ B, ZhangQ L, QiuT. Uplift capacity of plate anchors in sand [J]. Journal of Building Structures, 2003, 24(5): 82-91

[10]

DickinE A, LamanM. Uplift response of strip anchors in cohesionless geomaterial [J]. Advances in Engineering Software, 2007, 38(9): 618-625

[11]

LiuW BThe bearing behavior and calculation of the anti-uplift foundation [M], 2007, Shanghai, Shanghai Jiao Tong University Press

[12]

BouazzaA, FinlayT W. Uplift capacity of plate anchors buried in a two-layered sand [J]. Géotechnique, 1990, 40(2): 293-297

[13]

LiuH Q, HuangJ Z. Vertical uplift capacity of horizontal plate anchors [J]. Geotechnical Engineering Technique, 2007, 21(1): 25-27

[14]

GhalyA, HannaA. Ultimate pullout resistance of single vertical anchors [J]. Canadian Geotechnical Journal, 1994, 31(5): 661-672

[15]

MerifieldR S, LyaminA V, SloanS W. Three-dimensional lower bound solutions for the stability of plate anchors in sand [J]. Géotechnique, 2006, 56(2): 123-132

[16]

KouzerK M, KumarJ. Vertical uplift capacity of equally spaced horizontal strip anchors in sand [J]. International Journal of Geomechanics, ASCE, 2009, 9(5): 230-236

[17]

KouzerK M, KumarJ. Vertical uplift capacity of two interfering horizontal anchors in sand using an upper bound limit analysis [J]. Computers and Geotechnics, 2009, 36(6): 1084-1089

[18]

KhatriV N, KumarJ. Vertical uplift resistance of circular plate anchors in clays under undrained condition [J]. Computers and Geotechnics, 2009, 36(8): 1352-1359

[19]

BhattacharyaP, KumarJ. Uplift capacity of anchors in layered sand using finite-element limit analysis: Formulation and results [J]. International Journal of Geomechanics, 2016, 16(3): 04015078

[20]

BhattacharyaP, KumarJ. Uplift capacity of strip and circular anchors in soft clay with an overlay of sand layer [J]. Geotechnical and Geological Engineering, 2015, 3361475-1488

[21]

KumarJ, KouzerK M. Vertical uplift capacity of horizontal anchors using upper bound limit analysis and finite elements [J]. Canadian Geotechnical Journal, 2008, 45(5): 698-704

[22]

KhatriV N, KumarJ. Vertical uplift resistance of circular plate anchors in clays under undrained condition [J]. Computers and Geotechnics, 2009, 36(8): 1352-1359

[23]

SmithC C. Limit loads for a shallow anchor/ trapdoor embedded in a non-associative Coulomb soil [J]. Géotechnique, 2012, 62(7): 563-571

[24]

RoweR K, DavisE H. The behaviour of plate anchors in sand [J]. Géotechnique, 1982, 32(1): 9-23

[25]

LiuW B, ZhouJ. Partical flow code numerical simulation of extended foundation under the action of uplift loading [J]. Journal of Hydraulic Engineering, 2004, 35(12): 69-76

[26]

WandD, HuY X, RandolphM F. Three-dimensional large deformation finite-element analysis of plate anchors in uniform clay [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2010, 136(2): 355-365

[27]

YuL, LiuJ, KongX J, HuY X. Three-dimensional numerical analysis of the keying of vertically installed plate anchors in clay [J]. Computers and Geotechnics, 2009, 36(4): 558-567

[28]

GiampaJ R, BradshawA S, SchneiderJ A. Influence of dilatation angle on drained shallow circular anchor uplift capacity [J]. International Journal of Geomechanics (ASCE), 2017, 17(2): 04016056

[29]

HoekE. Strength of joined rock masses [J]. Géotechnique, 1983, 333187-223

[30]

AgarJ G, MorgensternN R, ScottJ. Shear strength and stress-strain behavior of Athabasca oil sand at elevated temperatures and pressures [J]. Canadian Geotechnical Journal, 1987, 24(1): 1-10

[31]

SantarelliF JTheoretical and experimental investigation of the stability of the axisymmetric borehole [D], 1987, London, University of London

[32]

ChenW F, LiuX LLimit analysis in geomaterial mechanics [M], 1990, Amsterdam, Elsevier Science

[33]

MaksimovicM. Nonlinear failure envelope for geomaterials [J]. Journal of Geotechnical Engineering, ASCE, 1989, 115(4): 581-586

[34]

BakerR. Nonlinear Mohr envelopes based on triaxial data [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2004, 130(5): 498-506

[35]

HoekE, BrayJ WRock slope engineering [M], 1981, London, The Institution of Mining and Metallurgy

[36]

ZhaoL H, LiL, YangX L, DanH C, ZouJ F. Calculating method of upper bound for ultimate pullout capacity of vertically loaded strip plate anchors based on nonlinear Mohr-Coulomb failure criterion [J]. Journal of Central South University (Science and Technology), 2009, 40(5): 1444-1450

[37]

ZhaoL H, LuoQ, LiL, DanH C. Ultimate pullout capacity of horizontal rectangular plate anchors [J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1414-1420

[38]

ZhaoL H, LiL, YangF, LiuX. Joined influences of nonlinearity and dilation on the ultimate pullout capacity of horizontal shallow plate anchors by energy dissipation method [J]. International Journal of Geomechanics, ASCE, 2011, 11(3): 195-201

[39]

WangH T, LiS C, WangQ, MiaoS J, JiangB. Limit analysis of ultimate pullout capacity of shallow horizontal strip plate anchor based on nonlinear failure criterion [J]. Engineering Mechanics, 2014, 31(2): 131-138

[40]

ZhangX J, ChenW F. Stability analysis of slopes with general nonlinear failure criterion [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1987, 11(1): 33-50

[41]

DrescherA, ChristopoulosC. Limit analysis slope stability with nonlinear yield condition [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(3): 341-345

[42]

ZhaoL H, ChengX, DanH C, TangZ P, ZhangY B. Effect of vertical earthquake component on the permanent seismic displacement of soil slopes based on the nonlinear Mohr-Coulomb failure criterion [J]. Soil and Foundations, 2017, 57(2): 237-251

[43]

DengD P, LiL, ZhaoL H. Limit equilibrium analysis for rock slope stability using basic Hoek–Brown strength criterion [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 24(9): 2154-2163

[44]

CollinsI F, GunnC I, PenderM J, WangY. Slope stability analyses for materials with nonlinear failure envelope [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(6): 533-550

[45]

TangG P, ZhaoL H, LiL, ChenJ Y. Combined influence of nonlinearity and dilation on slope stability evaluated by upper-bound limit analysis [J]. Journal of Central South University, 2017, 24(7): 1602-1611

[46]

ZhaoL H, LiL, YangF, LuoQ, LiuX. Upper bound analysis of slope stability with nonlinear failure criterion based on strength reduction technique [J]. Journal of Central South University of Technology, 2010, 17(4): 836-844

[47]

ZhaoL H, YangF, ZhangY B, DanH C, LiuW Z. Effects of shear strength reduction strategies on safety factor of homogeneous slope based on a general nonlinear failure criterion [J]. Computers and Geotechnics, 2015, 63: 215-228

[48]

ZhaoL H, ChengX, LiL, ChenJ Q, ZhangY B. Seismic displacement along a log-spiral failure surface with crack using rock Hoek-Brown failure criterion [J]. Soil Dynamics and Earthquake Engineering, 2017, 99(12): 74-85

[49]

HuangF, YangX L, LingT H. Prediction of collapsing region above deep spherical cavity roof under axis-symmetrical conditions [J]. Rock Mechanics and Rock Engineering, 2014, 47: 1511-1516

[50]

FraldiM, GuarracinoF. Limit analysis of collapse mechanisms in cavities and tunnels according to the Hoek-Brown failure criterion [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(4): 665-673

[51]

FraldiM, GuarracinoF. Analytical solutions for collapse mechanisms in tunnels with arbitrary cross sections [J]. International Journal of Solids and Structures, 2010, 47(2): 216-223

[52]

FraldiM, GuarracinoF. Limit analysis of progressive tunnel failure of tunnels in Hoek–Brown rock masses [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 50(2): 170-173

[53]

HuangF, YangX L, ZhaoL H, HuangK. Upper bound solution of ultimate pullout capacity of strip plate anchor based on Hoek-Brown failure criterion [J]. Rock and Soil Mechanics, 2012, 33(1): 183-188

[54]

TanY G, ZuoS, HuS H, YangX P. Study on the ultimate pullout capacity of 3-D shallow circle plate anchors [J]. Journal of Railway Science and Engineering, 2017, 14(6): 1166-1173

[55]

MerifieldR S, SloanS W. The ultimate pullout capacity of anchors in frictional soils [J]. Canadian Geotechnical Journal, 2006, 43(8): 852-868

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/